Non-Hermitian Hamiltonians in Quantum Physics pp 383-399 | Cite as

# Quantization of Big Bang in Crypto-Hermitian Heisenberg Picture

## Abstract

A background-independent quantization of Universe near its Big Bang singularity is considered. Several conceptual issues are addressed in Heisenberg picture. (1) The observable spatial-geometry non-covariant characteristics of an empty-space expanding Universe are sampled by (quantized) distances \(Q=Q(t)\) between space-attached observers. (2) In *Q*(*t*) one of the Kato’s exceptional-point times \(t=\tau _{(EP)}\) is postulated *real-valued*. At such an instant the widely accepted “Big Bounce” regularization of the Big Bang singularity gets replaced by the full-fledged quantum degeneracy. Operators \(Q(\tau _{(EP)})\) acquire a non-diagonalizable Jordan-block structure. (3) During our “Eon” (i.e., at all \(t>\tau _{(EP)}\)) the observability status of operators *Q*(*t*) is guaranteed by their self-adjoint nature with respect to an *ad hoc* Hilbert-space metric \(\varTheta (t) \ne I\). (4) In adiabatic approximation the passage of the Universe through its \(t=\tau _{(EP)}\) singularity is interpreted as a quantum phase transition between the preceding and the present Eon.

## Keywords

Hilbert Space Quantum Phase Transition Unitary Evolution Exceptional Point Heisenberg Picture## References

- 1.C.L. Bennett, D. Larson et al., Astrophys. J. Suppl. Ser.
**208**(2013). UNSP 20Google Scholar - 2.V. Mukhanov,
*Physical Foundations of Cosmology*(CUP, Cambridge, 2005)CrossRefMATHGoogle Scholar - 3.C. Rovelli,
*Quantum Gravity*(CUP, Cambridge, 2004)CrossRefMATHGoogle Scholar - 4.M. Znojil, Non-self-adjoint operators in quantum physics: ideas, people, and trends, in [21], pp. 7–58Google Scholar
- 5.F.J. Dyson, Phys. Rev.
**102**, 1217 (1956)ADSMathSciNetCrossRefGoogle Scholar - 6.F.G. Scholtz, H.B. Geyer, F.J.W. Hahne, Ann. Phys. (NY)
**213**, 74 (1992)ADSMathSciNetCrossRefGoogle Scholar - 7.C.M. Bender, S. Boettcher, Phys. Rev. Lett.
**80**, 5243 (1998); C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett.**89**, 270401 (2002); Phys. Rev. Lett.**92**, 119902 (2004) (erratum)Google Scholar - 8.C.M. Bender, Rep. Prog. Phys.
**70**, 947 (2007)ADSCrossRefGoogle Scholar - 9.A. Mostafazadeh, Int. J. Geom. Meth. Mod. Phys.
**7**, 1191 (2010)MathSciNetCrossRefGoogle Scholar - 10.A.V. Smilga, J. Phys. A: Math. Theor.
**41**, 244026 (2008)ADSMathSciNetCrossRefGoogle Scholar - 11.M. Znojil, SIGMA
**5**, 001 (2009). arXiv:0901.0700 - 12.M. Znojil, Phys. Lett. A
**379**, 2013 (2015)ADSMathSciNetCrossRefGoogle Scholar - 13.M. Znojil, Phys. Rev. D
**78**, 085003 (2008)ADSMathSciNetCrossRefGoogle Scholar - 14.A. Mostafazadeh, private communicationGoogle Scholar
- 15.W. Piechocki, APC seminar “Solving the general cosmological singularity problem”. Paris, 15 Nov 2012Google Scholar
- 16.P. Malkiewicz, W. Piechocki, Class. Quant. Gravity
**27**, 225018 (2010)ADSMathSciNetCrossRefGoogle Scholar - 17.A. Ashtekar, A. Corichi, P. Singh, Phys. Rev. D
**77**, 024046 (2008)ADSMathSciNetCrossRefGoogle Scholar - 18.M.H. Stone, Ann. Math.
**33**, 643 (1932)CrossRefGoogle Scholar - 19.A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D
**74**, 084003 (2006)ADSMathSciNetCrossRefGoogle Scholar - 20.T. Kato,
*Perturbation Theory for Linear Operators*(Springer, Berlin, 1966)CrossRefMATHGoogle Scholar - 21.F. Bagarello, J.-P. Gazeau, F.H. Szafraniec, M. Znojil (eds.),
*Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects*(Wiley, Hoboken, 2015)MATHGoogle Scholar - 22.J.-P. Antoine, C. Trapani, “Metric operators, generalized Hermiticity and lattices of Hilbert spaces,,, in [21], pp. 345–402Google Scholar
- 23.M. Znojil, SIGMA
**4**, 001 (2008). arXiv:0710.4432v3 - 24.T. Thiemann,
*Modern Canonical Quantum General Relativity*(CUP, Cambridge, 2007)CrossRefMATHGoogle Scholar - 25.M. Znojil, J. Phys. A: Math. Theor.
**40**, 4863 (2007); M. Znojil, J. Phys. A: Math. Theor.**40**, 13131 (2007)Google Scholar - 26.R. Penrose, Found. Phys.
**44**, 873 (2014)ADSMathSciNetCrossRefGoogle Scholar - 27.M. Znojil, J.-D. Wu, Int. J. Theor. Phys.
**52**, 2152 (2013)MathSciNetCrossRefGoogle Scholar - 28.D.I. Borisov, F. Ruzicka, M. Znojil, Int. J. Theor. Phys.
**54**, 4293 (2015)MathSciNetCrossRefGoogle Scholar - 29.C.M. Bender, S. Boettcher, Phys. Rev. Lett.
**80**, 5243 (1998)ADSMathSciNetCrossRefGoogle Scholar - 30.S. Albeverio, S. Kuzhel, “PT-symmetric operators in quantum mechanics: Krein spaces methods”, in [21], pp. 293–344Google Scholar
- 31.M. Znojil, H.B. Geyer, Fort. d. Physik—Prog. Phys.
**61**, 111 (2013)ADSCrossRefGoogle Scholar - 32.M. Znojil, Ann. Phys. (NY)
**361**, 226 (2015)MathSciNetCrossRefGoogle Scholar