Elasticity Imaging

  • Lilí Guadarrama
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 157)


This chapter is devoted to summarize different approaches for the imaging technique of elastography: Quasi-Static, Harmonic and Transient elastography, Models for viscoelasticity. This promising technique is a good example of interdisciplinary mathematical research and applications.


Tissue motion Palpation Elastography Sonoelasticity Hookian materials Bulk waves and modulus Shear waves and modulus Young’s modulus Lamé parameters Magnetic resonance imaging Acoustic radiation force impulse Shear wave elasticity imaging Supersonic shear imaging Optical coherence tomography Crawling wave imaging Helmholtz equation Aixplorer Rayleigh damping model Voigt model Ultrasound methods Fibroscan Phase-contrast method 


  1. 1.
    Adler, R.S., Barbosa, D.C., Cosgrove, D.O., Nassiri, D.K., Bamber, J.C., Hill, C.R.: Quantitative tissue motion analysis of digitized M-mode images: gestational differences of fetal lung. Ultrasound Med. Biol. 16, 561–569 (1990)CrossRefGoogle Scholar
  2. 2.
    Ammari, H., Garapon, P., Guadarrama Bustos, L., Kang, H.: Transient anomaly imaging by the acoustic radiation force. J. Differ. Equ. 249, 1579–1595 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari, H., Guadarrama Bustos, L., Kang, H., Lee, H.: Transient elasticity imaging and time reversal. Proc. R. Soc. Edinb. 141A, 1–20 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ammari, H., Bretin, E., Garnier, J., Jing, W., Kang, H., Wahab, A.: Localization, stability, and resolution of topological derivative based imaging functionals in elasticity. SIAM J. Imag. Sci. 6 (4), 2174–2212 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ammari, H., Bretin, E., Garnier, J., Wahab, A.: Time-reversal algorithms in viscoelastic media. Eur. J. Appl. Math. 24, 565–600 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, H.: Mathematical Methods in Elasticity Imaging. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  7. 7.
    Ammari, H., Bretin, E., Millien, P., Seppecher, L., Seo, J.-K.: Mathematical modeling in full-field optical coherence elastography. SIAM J. Appl. Math. 75 (3), 1015–1030 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ammari, H., Waters, A., Zhang, H.: Stability analysis for magnetic resonance elastography. J. Math. Anal. Appl. 430, 919–931 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Athanasiou, A., Tardivon, A., Tanter, M.I., SigalZafrani, B., Bercoff, J., Deffieux, T., Gennisson, J.L., Fink, M., Neuenschwander, S.: Breast lesions: quantitative elastography with supersonic shear imaging: preliminary results. Radiology 256, 297–303 (2010)CrossRefGoogle Scholar
  10. 10.
    Barbone, P.E., Bamber, J.C.: Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys. Med. Biol. 47, 2147–2164 (2002)CrossRefGoogle Scholar
  11. 11.
    Barbone, P.E., Gokhale, N.H.: Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl. 20, 283–296 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Birnholz, J.C., Farrell, E.E.: Fetal lung development: compressibility as a measure of maturity. Radiology 157, 495–498 (1985)CrossRefGoogle Scholar
  13. 13.
    Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 396–409 (2004)CrossRefGoogle Scholar
  14. 14.
    Bercoff, J., Tanter, M., Muller, M., Fink, M.: The role of viscosity in the impulse diffraction field of elastic waves induced by the acoustic radiation force. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1523–1536 (2004)CrossRefGoogle Scholar
  15. 15.
    Bouchard, R.R., Hsu, S.J., Wolf, P.D., Trahey, G.E.: In vivo cardiac, acoustic-radiation-force-driven, shear wave velocimetry. Ultrason. Imaging 31, 201–213 (2009)CrossRefGoogle Scholar
  16. 16.
    Bretin, E., Guadarrama Bustos, L., Wahab, A.: On the Green function in visco-elastic media obeying a frequency power-law. Math. Methods Appl. Sci. 34, 819–838 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Castaneda, B., Hoyt, K., Westesson, K., An, L., Baxter, L., Joseph, J., Strang, J., Rubens, D., Parker, K.: Performance of three-dimensional sonoelastography in prostate cancer detection: a comparison between ex vivo and in vivo experiments. In: IEEE Ultrasonics Symposium, 20–23 September 2009, Rome, pp. 519–522Google Scholar
  18. 18.
    Catheline, S., Wu, F., Fink, M.: A solution to diffraction biases in sonoelasticity: the acoustic impulse technique. J. Acoust. Soc. Am. 105, 2941–2950 (1999)CrossRefGoogle Scholar
  19. 19.
    Catheline, S., Gennisson, J.-L., Delon, G., Sinkus, R., Fink, M., Abouelkaram, S., Culioli, J.: Measurement of viscoelastic properties of solid using transient elastography: an inverse problem approach. J. Acoust. Soc. Am. 116, 3734–3741 (2004)CrossRefGoogle Scholar
  20. 20.
    Chenevert, T.L., Skovoroda, A.R., O’Donnell, M., Emelianov, S.Y.: Elasticity reconstructive imaging by means of stimulated echo MRI. Magn. Reson. Med. 39, 482–490 (1998)CrossRefGoogle Scholar
  21. 21.
    Cox, M., Rogers, P.H.: Automated noninvasive motion measurement of auditory organs in fish using ultrasound. J. Vib. Acoust. Stress Reliab. Des. 109, 55–59 (1987)CrossRefGoogle Scholar
  22. 22.
    Deffieux, T., Montaldo, G., Tanter, M., Fink, M.: Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans. Med. Imaging 28, 313–322 (2009)CrossRefGoogle Scholar
  23. 23.
    Dickinson, R.J., Hill, C.R.: Measurement of soft tissue motion using correlation betweenA-scans. Ultrasound Med. Biol. 8, 263–271 (1982)CrossRefGoogle Scholar
  24. 24.
    Doyley, M.M.: Model-based elastography: survey of approaches to the inverse elasticity problem. Phys. Med. Biol. 57, R35–R37 (2012)CrossRefGoogle Scholar
  25. 25.
    Doyley, M.M., Meaney, P.M., Bamber, J.C.: Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 45, 1521–1540 (2000)CrossRefGoogle Scholar
  26. 26.
    Doyley, M.M., Van Houten, E.E., Weaver, J.B., Poplack, S., Duncan, L., Kennedy, F., Paulsen, K.D.: Shear modulus estimation using parallelized partial volumetric reconstruction. IEEE Trans. Med. Imaging 23, 1404–1416 (2004)CrossRefGoogle Scholar
  27. 27.
    Doyley, M.M., Srinivasan, S., Pendergrass, S.A., Wu, Z., Ophir, J.: Comparative evaluation of strain-based and model-based modulus elastography. Ultrasound Med. Biol. 31, 787–802 (2005)CrossRefGoogle Scholar
  28. 28.
    Doyley, M.M., Feng, Q., Weaver, J.B., Paulsen, K.D.: Performance analysis of steady-state harmonic elastography. Phys. Med. Biol. 52, 2657–2674 (2007)CrossRefGoogle Scholar
  29. 29.
    Doyley, M.M., Perreard, I., Patterson, A.J., Weaver, J.B., Paulsen, K.M.: The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials. Med. Phys. 37 (8), 3970–3979 (2010)CrossRefGoogle Scholar
  30. 30.
    Fatemi, M., Greenleaf, J.F.: Ultrasound-stimulated vibro-acoustic spectrography. Science 280, 82–85 (1998)CrossRefGoogle Scholar
  31. 31.
    Fowlkes, J.B., Emelianov, S.Y., Pipe, J.G., Skovoroda, A.R., Carson, P.L., Adler, R.S., Sarvazyan, A.P.: Magnetic resonance imaging techniques for detection of elasticity variation. Med. Phys. 22, 1771–1778 (1995)CrossRefGoogle Scholar
  32. 32.
    Gao, L., Alam, S.K., Lerner, R.M., Parker, K.J.: Sonoelasticity imaging: theory and experimental verification. J. Acoust. Soc. Am. 97, 3875–3886 (1995)CrossRefGoogle Scholar
  33. 33.
    Gdoura, S., Guadarrama Bustos, L.: Transient wave imaging of anomalies: a numerical study. Contemp. Math. 548, 31–44 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Greenleaf, J.F., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5, 57–78 (2003)CrossRefGoogle Scholar
  35. 35.
    Harrigan, T.P., Konofagou, E.E.: Estimation of material elastic moduli in elastography: a local method, and an investigation of Poisson’s ratio sensitivity J. Biomech. 37 (8), 1215–1221 (2004)CrossRefGoogle Scholar
  36. 36.
    Holen, J., Waag, R., Gramiak, R.: Representation of rapidly oscillating structures on Doppler display. Ultrasound Med. Biol. 11, 267–272 (1985)CrossRefGoogle Scholar
  37. 37.
    Hoyt, K., Parker, K.J., Rubens, D.J.: Real-time shear velocity imaging using sonoelastographic techniques Ultrasound Med. Biol. 33, 1086–1097 (2007)Google Scholar
  38. 38.
    Hoyt, K., Castaneda, B., Parker, K.J.: Two-dimensional sonoelastographic shear velocity imaging. Ultrasound Med. Biol. 34, 276–288 (2008)CrossRefGoogle Scholar
  39. 39.
    Huang, S.R., Lerner, R.M., Parker, K.J.: Time domain Doppler estimators of the amplitude of vibrating targets. J. Acoust. Soc. Am. 91, 965–974 (1992)CrossRefGoogle Scholar
  40. 40.
    Insana, M.F., Cook, L.T., Bigen, M., Chaturvede, P., Zhu, Y.: Maximum-likelihood approach to strain imaging using ultrasound. J. Acoust. Soc. Am. 107, 1421–1434 (2000)CrossRefGoogle Scholar
  41. 41.
    Jiang, J., Varghese, T., Brace, C.L., Madsen, E.L., Hall, T.J., Bharat, S., Hobson, M.A., Zagzebski, J. A., Lee Jr., F.T., Young’s modulus reconstruction for radio-frequency ablation electrode-induced displacement fields: a feasibility study. IEEE Trans. Med. Imaging 28, 1325–1334 (2009)CrossRefGoogle Scholar
  42. 42.
    Kallel, F., Bertrand, M.: Tissue elasticity reconstruction using linear perturbation method. IEEE Trans. Med. Imaging 15 (3), 299–313 (1996)CrossRefGoogle Scholar
  43. 43.
    Kallel, F., Ophir, J.: A least-squares strain estimator for elastography. Ultrason. Imaging 19, 195–208 (1997)CrossRefGoogle Scholar
  44. 44.
    Kallel, F., Ophir, J., Magee, K., Krouskop, T.: Elastographic imaging of low-contrast elastic modulus distributions in tissue. Ultrasound Med. Biol. 24, 409–425 (1998)CrossRefGoogle Scholar
  45. 45.
    Kennedy, B.F., Hillman, T.R., McLaughlin, R.A., Quirk, B.C., Sampson, D.D.: In vivo dynamic optical coherence elastography using a ring actuator. Opt. Express 17, 21762–21772 (2009)CrossRefGoogle Scholar
  46. 46.
    Kolipaka, A., Woodrum, D., Araoz, P.A., Ehman, R.L.: MR elastography of the in vivo abdominal aorta: a feasibility study for comparing aortic stiffness between hypertensives and normotensives. J. Magn. Reson. Imaging 35, 582–586 (2012)CrossRefGoogle Scholar
  47. 47.
    Konofagou, E., Dutta, P., Ophir, J., Cespedes, I.: Reduction of stress nonuniformities by apodization of compressor displacement in elastography. Ultrasound Med. Biol. 22, 1229–1236 (1996)CrossRefGoogle Scholar
  48. 48.
    Krouskop, T.A., Dougherty, D.R., Levinson, S.F.: A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J. Rehabil. Res. Biol. 24, 1–8 (1987)Google Scholar
  49. 49.
    Kruse, S.A., Smith, J.A., Lawrence, A.J., Dresner, M.A., Manduca, A., Greenleaf, J.F., Ehman, R.L.: Tissue characterization using magnetic resonance elastography: preliminary results. Phys. Med. Biol. 45, 1579–1590 (2000)CrossRefGoogle Scholar
  50. 50.
    Kruse, S.A., Rose, G.H., Glaser, K.J., Manduca, A., Felmlee, J.P., Jack, C.R., Ehman, R.L.: Magnetic resonance elastography of the brain. Neuroimage 39, 231–237 (2008)CrossRefGoogle Scholar
  51. 51.
    Lerner, R.M., Parker, K.J.: Sonoelasticity in ultrasonic tissue characterization and echographic imaging. In: Proceedings of the European Communities Workshop, Nijmegen, 7th October 1987Google Scholar
  52. 52.
    Lerner, R.M., Parker, K.J., Holen, J., Gramiak, R., Waag, R.C.: Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets. Acoust. Imaging 16, 317–327 (1988)CrossRefGoogle Scholar
  53. 53.
    Levinson, S.F., Shinagawa, M., Sato, T.: Sonoelastic determination of human skeletal muscle elasticity. J. Biomech. 28, 11445–11454 (1995)CrossRefGoogle Scholar
  54. 54.
    Liang, X., Adie, S.G., Renu, J.R., Boppart, S.A.: Dynamic spectral-domain optical coherence elastography for tissue characterization. Opt. Express 18, 14183–14190 (2010)CrossRefGoogle Scholar
  55. 55.
    Manduca, A., Dutt, V., Borup, D.T., Muthupillai, R., Greenleaf, J.F., Ehman, R.L.: An inverse approach to the calculation of elasticity maps for magnetic resonance elastography. Proc. SPIE 3338, 426–436 (1998)CrossRefGoogle Scholar
  56. 56.
    Manduca, A., Oliphant, T.E., Dresner, M.A., Mahowald, J.L., Kruse, S.A., Amromin, E., Felmlee, J.P., Greenleaf, J.F., Ehman, R.L.: Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image. Anal. 5, 237–254 (2001)CrossRefGoogle Scholar
  57. 57.
    McLaughlin, J.R., Yoon, J.R.: Unique identifiability of elastic parameters from time-dependent interior displacement measurement. Inverse Probl. 20, 25–45 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Muller, M., Gennisson, J.L., Deffieux, T., Tanter, M., Fink, M.: Quantitative viscoelasticity mapping of human liver using supersonic shear imaging: preliminary in vivo feasability study. Ultrasound Med. Biol. 35, 219–229 (2009)CrossRefGoogle Scholar
  59. 59.
    Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269, 1854–1857 (1995)CrossRefGoogle Scholar
  60. 60.
    Nederveen, A.J., Avril, S., Speelman, L.: MRI strain imaging of the carotid artery: present limitations and future challenges. J. Biomech. 47, 824–833 (2014)CrossRefGoogle Scholar
  61. 61.
    Nightingale, K.R., Soo, M.S., Nightingale, R., Trahey, G.: Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility. Ultrasound Med. Biol. 28, 227–235 (2002)CrossRefGoogle Scholar
  62. 62.
    Nightingale, K.R., Zhai, L., Dahl, J.J., Frinkley, K.D., Palmeri, M.L.: Shear wave velocity estimation using acoustic radiation force impulsive excitation in liver in vivo. In: Proceedings of IEEE Ultrasonic Symposium, Vancouver, pp. 1156–1160 (2006)Google Scholar
  63. 63.
    Oberai, A.A., Gokhale, N.H., Feijoo, G.R.: Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl. 19, 297–313 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., Li, X.: Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991)CrossRefGoogle Scholar
  65. 65.
    Palmeri, P.L., Wang, M.H., Dahl, J.J., Frinkley, K.D., Nightingale, K.R.: Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med. Biol. 34, 546–558 (2008)CrossRefGoogle Scholar
  66. 66.
    Park, E., Maniatty, A.M.: Shear modulus reconstruction in dynamic elastography: time harmonic case. Phys. Med. Biol. 51, 3697–3721 (2006)CrossRefGoogle Scholar
  67. 67.
    Parker, K.J., Lerner, R.M.: Sonoelasticity of organs: shear waves ring a bell. J. Ultrasound Med. 11, 387–392 (1992)Google Scholar
  68. 68.
    Parker, K.J., Doyley, M.M., Rubens, D.J.: Imaging the elastic properties of tissue: the 20 year perspective. Phys. Med. Biol. 56, R1–R29 (2011)CrossRefGoogle Scholar
  69. 69.
    Pellot-Barakat, C., Mai, J.J., Kargel, C., Hermen, A., Trummer, B., Insana, M.F.: Accelerating ultrasonic strain reconstructions by introducing mechanical constraints. Proc. SPIE 4684, 323–333 (2002)CrossRefGoogle Scholar
  70. 70.
    Petrov, A.Y., Sellier, M., Docherty, P.D., Chase, J.G.: Parametric-based brain Magnetic Resonance Elastography using a Rayleigh damping material model. Comput. Methods Programs Biomed. 116 (3), 328–339 (2014)CrossRefGoogle Scholar
  71. 71.
    Plewes, D.B., Betty, I., Urchuk, S.U., Soutar, I.: Visualizing tissue compliance with MR imaging. J. Magn. Reson. Imaging 5, 733–738 ( 1995)CrossRefGoogle Scholar
  72. 72.
    Ponnekanti, H., Ophir, J., Cespedes, I.: Ultrasonic-imaging of the stress-distribution in elastic media due to an external compressor. Ultrasound Med. Biol. 20, 27–33 (1994)CrossRefGoogle Scholar
  73. 73.
    Raghavan, K.R., Yagle, A.E.: Forward and inverse problems in elasticity imaging of soft-tissues. IEEE Trans. Nucl. Sci. 41, 1639–1648 (1994)CrossRefGoogle Scholar
  74. 74.
    Richards, M.S., Barbone, P.E., Oberai, A.A.: Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study. Phys. Med. Biol. 54, 757–779 (2009)CrossRefGoogle Scholar
  75. 75.
    Sarvazyan, A.P., Rudenko, O.V., Swanson, S.D., Fowlkes, J.B., Emelianov, S.Y.: Shear wave elasticity imaging—a new ultrasonic technology of medical diagnostic. Ultrasound Med. Biol. 20, 1419–1436 (1998)CrossRefGoogle Scholar
  76. 76.
    Sarvazyan, A.P., Urban, M.W., Greenleaf, J.F.: Acoustic waves in medical imaging and diagnostics. Ultrasound Med. Biol. 39 (7), 1133–1146 (2013)CrossRefGoogle Scholar
  77. 77.
    Schmitt, J.M.: OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3, 199–211 (1998)CrossRefGoogle Scholar
  78. 78.
    Shiina, T.: Ultrasound elastography: development of novel technologies and standardization. Jpn. J. Appl. Phys. 53, 07KA02 (2014)Google Scholar
  79. 79.
    Shiina, T., Nitta, N., Ueno, E., Bamber, J.C.: Real time elasticity imaging using the combined autocorrelation method. J. Med. Ultrason. 29, 119–128 (2002)CrossRefGoogle Scholar
  80. 80.
    Sinkus, R., Lorenzen, J., Schrader, D., Lorenzen, M., Dargatz, M., Holz, D.: High-resolution tensor MR elastography for breast tumor detection. Phys. Med. Biol. 45, 1649–1664 (2000)CrossRefGoogle Scholar
  81. 81.
    Sinkus, R., Tanter, M., Xydeas, T., Catheline, S., Bercoff, J., Fink, M.: Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn. Reson. Imaging 23, 159–165 (2005)CrossRefGoogle Scholar
  82. 82.
    Skovoroda, A.R., Emelianov, S.Y., Lubinski, M.A., Sarvazyan, A.P., O’Donnell, M.: Theoretical analysis and verification of ultrasound displacement and strain imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 302–313 (1994)CrossRefGoogle Scholar
  83. 83.
    Skovoroda, A.R., Emelianov, S.Y., O’Donnell, M.: Tissue elasticity reconstruction based on ultrasonic displacement and strain images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 747–765 (1995)CrossRefGoogle Scholar
  84. 84.
    Sumi, C.: Spatially variant regularization for tissue strain measurement and shear modulus reconstruction. J. Med. Ultrason. 34, 125–131 (2007)CrossRefGoogle Scholar
  85. 85.
    Sumi, C.: Displacement vector measurement using instantaneous ultrasound signal phase-multidimensional autocorrelation and Doppler methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 24–43 (2008)CrossRefGoogle Scholar
  86. 86.
    Sumi, C., Suzuki, A., Nakayama, K.: Phantom experiment on estimation of shear modulus distribution in softtissue from ultrasonic measurement of displacement vector field. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 78, 1655–1664 (1995)Google Scholar
  87. 87.
    Szabo, T.L., Wu, J.: A model for longitudinal and shear wave propagation in viscoelastic media. J. Acous. Soc. Am. 107, 2437–2446 (2000)CrossRefGoogle Scholar
  88. 88.
    Tanter, M., Bercoff, J., Athanasiou, A., Deffieux, T., Gennisson, J.L., Montaldo, G., Muller, M., Tardivon, A., Fink, M.: Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med. Biol. 34, 1373–1386 (2008)CrossRefGoogle Scholar
  89. 89.
    Taylor, L.S., Porter, B.C., Rubens, D.J., Parker, K.J.: Three-dimensional sonoelastography: principles and practices. Phys. Med. Biol. 45, 1477–1494 (2000)CrossRefGoogle Scholar
  90. 90.
    Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  91. 91.
    Tristam, M., Barbosa, D.C., Crosgrove, D.O., Nassire, D.K., Bamber, J.C., Hill, C.R.: Ultrasonic study of in vivo kinetic characteristics of human tissue. Ultrasound Med. Biol. 12, 927–937 (1986)CrossRefGoogle Scholar
  92. 92.
    Van Houten, E.E.W., Paulsen, K.D., Miga, M.I., Kennedy, F.E., Weaver, J.B.: An overlapping subzone technique for MR-based elastic property reconstruction. Mag. Reson. Med. 42, 779–786 (1999)CrossRefGoogle Scholar
  93. 93.
    Van Houten, E.E.W., Miga, M.I., Weaver, J.B., Kennedy, F.E., Paulsen, K.D.: Three-dimensional subzone-based reconstruction algorithm for MR elastography. Magn. Reson. Med. 45, 827–837 (2001)CrossRefGoogle Scholar
  94. 94.
    Van Houten, E.E.W., Doyley, M.M., Kennedy, F.E., Weaver, J.B., Paulsen, K.D.: Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J. Magn. Reson. Imaging 17, 72–85 (2003)CrossRefGoogle Scholar
  95. 95.
    Varghese, T., Ophir, J.: A theoretical framework for performance characterization of elastography: the strain filter. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 164–172 (1997)CrossRefGoogle Scholar
  96. 96.
    Vogel, C.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  97. 97.
    Weaver, J.B., Van Houten, E.E.W., Miga, M.I., Kennedy, F.E., Paulsen, K.D., Magnetic resonance elastography using 3D gradient echo measurements of steady-state motion. Med. Phys. 28, 1620–1628 (2001)CrossRefGoogle Scholar
  98. 98.
    Wilson, L.S., Robinson, D.E.: Ultrasonic measurement of small displacements and deformation tissue. Ultrason. Imaging 4, 71–82 (1982)CrossRefGoogle Scholar
  99. 99.
    Wu, Z., Taylor, L.S., Rubens, D.J., Parker, K.J.: Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogenous materials. Phys. Med. Biol. 49, 911–922 (2004)CrossRefGoogle Scholar
  100. 100.
    Wu, Z., Hoyt, K., Rubens, D.J., Parker, K.J.: Sonoelastographic imaging of interference patterns for estimation of shear velocity distribution in biomaterials. J. Acoust. Soc. Am. 120, 535–545 (2006)CrossRefGoogle Scholar
  101. 101.
    Yamakoshi, Y., Sato, J., Sato, T.: Ultrasonic-imaging of internal vibration of soft-tissue under force vibration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 45–57 (1990)CrossRefGoogle Scholar
  102. 102.
    Zhai, L., Madden, J., Mouraviev, V., Polascik, T., Nightingale, K.: Correlation between SWEI and ARFI image findings in ex vivo human prostates. In: IEEE Ultrasonics Symposium, Rome, pp. 523–526 (2009)Google Scholar
  103. 103.
    Zhang, Y., Hall, L.O., Goldgof, D.B., Sarkar, S.: A constrained genetic approach for computing material property of elastic objects. IEEE Trans. Evol. Comput. 10, 341–357 (2006)CrossRefGoogle Scholar
  104. 104.
    Zhang, M., Castaneda, B., Wu, Z., Nigwekar, P., Joseph, J.V., Rubens, D.J., Parker, K.J.: Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues. Ultrasound Med. Biol. 33, 1617–1631 (2007)CrossRefGoogle Scholar
  105. 105.
    Zhu, Y., Chaturvedi, P., Insana, M.F.: Strain imaging with a deformable mesh. Ultrason. Imaging 20, 127–146 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.CONACyT∕CIMAT AguascalientesAguascalientesMexico

Personalised recommendations