Reuse and Integration of Specification Logics: The Hybridisation Perspective

  • Luis S. BarbosaEmail author
  • Manuel A. Martins
  • Alexandre Madeira
  • Renato Neves
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 446)


Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration.


Software specification Hybrid logic Hybridization 



This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme, and by National Funds through the FCT (Portuguese Foundation for Science and Technology) within project POCI-01-0145-FEDER-006961. M. Martins was further supported by project UID/MAT/04106/2013. A. Madeira and R. Neves research was carried out in the context of a post-doc and a Ph.D. grant with references SFRH/BPD/103004/2014 and SFRH/BD/52234/2013, respectively. L.S. Barbosa is also supported by SFRH/BSAB/113890/2015.


  1. 1.
    Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong, L., de Queiroz, R. (eds.) Proceedings of the 19th International Workshop on Logic. Language, Information and Computation (WoLLIC 2012). Lecture Notes in Computer Science, vol. 7456, pp. 142–153. Springer, Buenos Aires, Argentina (2012)Google Scholar
  2. 2.
    Areces, C., Fervari, R., Hoffmann, G.: Tableaux for relation-changing modal logics. In: Proceedings of Frontiers of Combining Systems 2013, Nancy, France, Sept 2013Google Scholar
  3. 3.
    Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309–332 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic J. IGPL 23(4), 601–627 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 822–868. Elsevier (2007)Google Scholar
  6. 6.
    Burstall, R., Diaconescu, R.: Hiding and behaviour: an institutional approach. In: Roscoe, W. (ed.) A Classical Mind: Essays in Honour of C.A.R. Hoare, pp. 75–92. Prentice-Hall (1994)Google Scholar
  7. 7.
    Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language. In: Bjørner, D. (ed.) Abstract Software Specifications (1979 Copenhagen Winter School, 22 Jan–2 Feb 1979), Lecture Notes in Computer Science, vol. 86, pp. 292–332. Springer (1980)Google Scholar
  8. 8.
    Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr. Program. 67(1–2), 3–51 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Beierle, C., Kern-Isberner, G.: Looking at probabilistic conditionals from an institutional point of view. In: Kern-Isberner, G., Rödder, W., Kulmann, F. (eds.) Conditionals, Information, and Inference (Revised Selected Papers of WCII 2002, Hagen, Germany, 13–15 May 2002), Lecture Notes in Computer Science, vol. 3301, pp. 162–179. Springer (2005)Google Scholar
  10. 10.
    Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Logic J. IGPL 8(3), 339–365 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Barbosa, L.S., Martins, M.A., Carreteiro, M.: A Hilbert-style axiomatisation for equational hybrid logic. J. Logic Lang. Inf. 23(1), 31–52 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286(2), 197–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Braüner, T.: Natural deduction for first-order hybrid logic. J. Logic Lang. Inf. 14(2), 173–198 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series. Springer (2010)Google Scholar
  15. 15.
    Cîrstea, C.: An institution of modal logics for coalgebras. J. Log. Algebr. Program. 67(1–2), 87–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Carnielli, W., Coniglio, M.E.: Combining logics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 2011 edn. (2011)Google Scholar
  17. 17.
    Codescu, M., Găină, D.: Birkhoff completeness in institutions. Logica Universalis 2(2), 277–309 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Caleiro, C., Mateus, P., Sernadas, A., Sernadas, C.: Quantum institutions. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer Science, vol. 4060, pp. 50–64. Springer (2006)Google Scholar
  19. 19.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1–2), 69–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Diaconescu, Răzvan: Institution-independent Model Theory. Studies in Universal Logic. Birkhäuser Basel (2008)Google Scholar
  21. 21.
    Diaconescu, R.: On quasi-varieties of multiple valued logic models. Math. Log. Q. 57(2), 194–203 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. J. Logic Comput. (2015)Google Scholar
  23. 23.
    Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first-order logic. Math. Struct. Comput. Sci. 1–44 (2015) (in print)Google Scholar
  24. 24.
    Diaconescu, R., Stefaneas, P.S.: Ultraproducts and possible worlds semantics in institutions. Theor. Comput. Sci. 379(1–2), 210–230 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation vol. 9. Research Studies Press (2001)Google Scholar
  27. 27.
    Goguen, J.A., Roşu, G.: Institution morphisms. Formal Asp. Comput. 13(3–5), 274–307 (2002)CrossRefzbMATHGoogle Scholar
  28. 28.
    Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual IEEE Symposium on Logic in Computer Science (LICS’96, New Brunswick, New Jersey, USA, 27–30 July 1996), pp. 278–292 (1996)Google Scholar
  29. 29.
    Hull, M.E.C., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer Verlag (2005)Google Scholar
  30. 30.
    Heitmeyer, C.L., Kirby, J., Labaw, B.G.: The SCR method for formally specifying, verifying, and validating requirements: tool support. In: Richards Adrion, W., Fuggetta, A., Taylor, R.N., Wasserman, A.I. (eds.) Pulling Together, Proceedings of the 19th International Conference on Software Engineering, Boston, Massachusetts, USA, 17–23 May 1997, pp. 610–611. ACM (1997)Google Scholar
  31. 31.
    Indrzejczak, A.: Modal hybrid logic. Logic Logical Philos. 16, 147–257 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Jackson, D.: Software Abstractions (Logic, Language, and Analysis), 2nd edn. MIT Press (2011)Google Scholar
  33. 33.
    Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.B.: Hybrid i/o automata. In: Alur, R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control (DIMACS/SYCON Workshop, 22–25 Oct 1995, Ruttgers University, New Brunswick, NJ, USA). Lecture Notes in Computer Science, vol. 1066, pp. 496–510. Springer (1995)Google Scholar
  34. 34.
    Madeira, A.: Foundations and techniques for software reconfigurability. Ph.D. thesis, Universidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme), July 2013Google Scholar
  35. 35.
    Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of reactive systems: an institutional approach. In: Barthe, G., Pardo, A., Schneider, G. (eds.) Software Engineering and Formal Methods (SEFM 2011, Montevideo, Uruguay, 14–18 Nov 2011). Lecture Notes in Computer Science, vol. 7041, pp. 269–285. Springer (2011)Google Scholar
  36. 36.
    Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: CASL: the common algebraic specification language: semantics and proof theory. Comput. Inf. 22, 285–321 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Madeira, A., Martins, M.A., Barbosa, L.S.: Boilerplates for reconfigurable systems: a language and its semantics. In: Du Bois, A.R., Trinder, P. (eds.) Programming Languages—17th Brazilian Symposium, SBLP 2013, Brasília, Brazil, 3–4 Oct 2013. Proceedings. Lecture Notes in Computer Science, vol. 8129, pp. 75–89. Springer (2013)Google Scholar
  38. 38.
    Martins, M.A., Madeira, A., Barbosa, L.S., Neves, R.: Paradigm integration in a specification course. In: Joshi, J., Bertino, E., Thuraisingham, B.M., Liu, L. (eds.) Proceedings of 15th IEEE International Conference on Information Reuse and Intergration, IRI 2014, Redwood City, CA, USA, 13–15 Aug 2014, pp. 492–499. IEEE Press (2014)Google Scholar
  39. 39.
    Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) Algebra and Coalgebra in Computer Science (CALCO 2011, Winchester, UK, 30 Aug–2 Sept 2011). Lecture Notes in Computer Science, vol. 6859, pp. 283–297. Springer (2011)Google Scholar
  40. 40.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2007—Braga, Portugal, 24 Mar—1 Apr 2007). Lecture Notes in Computer Science, vol. 4424, pp. 519–522. Springer (2007)Google Scholar
  41. 41.
    Mossakowski, T.: Different types of arrow between logical frameworks. In: auf der Heide, F.M., Monien, B. (eds.) Automata, Languages and Programming (ICALP96, Paderborn, Germany, 8–12 July 1996). Lecture Notes in Computer Science, vol. 1099, pp. 158–169. Springer (1996)Google Scholar
  42. 42.
    Mossakowski, T., Roggenbach, M.: Structured CSP—a process algebra as an institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) Recent Trends in Algebraic Development Techniques (Revised Selected Papers of WADT 2006, La Roche en Ardenne, Belgium, 1–3 June 2006). Lecture Notes in Computer Science, vol. 4409, pp. 92–110. Springer (2006)Google Scholar
  43. 43.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In: Heckel, R., Milius, S. (eds.) Algebra and Coalgebra in Computer Science—5th International Conference, CALCO 2013, Warsaw, Poland, 3–6 Sept 2013. Proceedings. Lecture Notes in Computer Science, vol. 8089, pp. 340–345 (2013)Google Scholar
  44. 44.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: An institution for alloy and its translation to second-order logic. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Integration of Reusable Systems [extended versions of the best papers presented at IEEE International Conference on Information Reuse and Integration and IEEE International Workshop on Formal Methods Integration, San Francisco, CA, USA, Aug 2013]. Advances in Intelligent Systems and Computing, vol. 263, pp. 45–75. Springer (2013)Google Scholar
  45. 45.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Completeness and decidability results for hybrid(ised) logics. In: Braga, C., Martí-Oliet, N. (eds.) Formal Methods: Foundations and Applications - 17th Brazilian Symposium, SBMF 2014, Maceió, AL, Brazil, 29 Sept–1 Oct 2014. Lecture Notes in Computer Science, vol. 8941, pp. 146–161. Springer (2015)Google Scholar
  46. 46.
    Prior, A.N.: Past, Present and Future. Oxford University Press (1967)Google Scholar
  47. 47.
    Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2), 263–332 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Ciocarlie, H., Szepesia, R.: An overview on software reconfiguration. Theory Appl. Math. Comput. Sci. 1, 74–79 (2011)Google Scholar
  49. 49.
    Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I., Smolka, S.A. (eds.) Concurrency Theory (CONCUR’95—Philadelphia, PA, USA, 21–24 Aug 1995). Lecture Notes in Computer Science, vol. 962, pp. 234–248. Springer (1995)Google Scholar
  50. 50.
    Schröder, L., Mossakowski, T.: HasCasl: integrated higher-order specification and program development. Theor. Comput. Sci. 410(12–13), 1217–1260 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Sokolova, A.: Probabilistic systems coalgebraically: a survey. Theor. Comput. Sci. 412(38), 5095–5110 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. Monographs on Theoretical Computer Science, an EATCS Series. Springer (2012)Google Scholar
  53. 53.
    van Bentham, J.: Modal Logic and Classic Logic. Humanities Press (1983)Google Scholar
  54. 54.
    van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 2605, pp. 268–276. Springer (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Luis S. Barbosa
    • 1
    Email author
  • Manuel A. Martins
    • 2
  • Alexandre Madeira
    • 1
  • Renato Neves
    • 1
  1. 1.HASLab - INESC TEC & University of MinhoBragaPortugal
  2. 2.CIDMA - Department of MathematicsUniversity of AveiroAveiroPortugal

Personalised recommendations