On the Possibilities of Applying the AHP Method to a Multi-criteria Component Importance Analysis of Complex Technical Objects

  • Leszek Chybowski
  • Katarzyna Gawdzińska
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 445)


The paper presents selected issues in the area of modelling a complex technical system structure. We presented the main types of a real technical system reservation. We showed selected proposals of a component redundancy description. We presented a black-box model of the system and described our own concept of qualitative-quantitative analysis of the complex technical system component importance. We also showed a possibility of applying the AHP method to a multi-criteria importance analysis. Some research achievements in this area and propositions for further development of a multi-criteria component analysis have been shown.


Importance analysis Complex system Human-machine interfaces Machinery AHP Expert opinion Importance criteria Multicriteria analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zolkiewski, S., Pioskowik D.: Robot control and online programming by human gestures using a kinect motion sensor. Advances in Intelligent Systems and Computing, Vol. 275. New Perspectives in Information Systems and Technologies. 593-605 (2014)Google Scholar
  2. 2.
    Zolkiewski, S.: Diagnostics and transversal vibrations control of rotating beam by means of Campbell diagrams. Key Engineering Materials, Vol. 588, 91-100. doi:10.4028/ (2014)
  3. 3.
    Jaźwiński, J., Smalko, Z.: Rozważania na temat właściwości systemów nadmiarowych. Okrętownictwo i Oceanotechnika. WUPS, Szczecin (2006)Google Scholar
  4. 4.
    Chybowski, L.: Ważność elementów w strukturze złożonych systemów technicznych. ITE-PIB, Radom – Szczecin (2014)Google Scholar
  5. 5.
    Chybowski, L.: Application of External Events Vectors for Defining Reliability Structure of Fishing Vessels power, Propulsion and Technological Plant. PJoES, Vol. 18, No. 2A, 45–50 (2009)Google Scholar
  6. 6.
    Chybowski L., Zolkiewski S.:,Basic reliability structures of complex technical systems. New Contributions in Information Systems and Technologies. Advances in Intelligent Systems and Computing, Volume 354, Springer International Publishing, 333-342, doi:  10.1007/978-3-319-16528-8_31 (2015)
  7. 7.
    Karanta, I.: Importance measures for the dynamic flowgraph methodology. CHARISMA Project. Research report VTT-R-00525-11, Helsinki. (2011) [access: 01.06.2015]
  8. 8.
    Smalko, Z., Jaźwiński, J.: Domyślne nadmiary systemu działaniowego statku powietrznego. XXXII Zimowa Szkoła Niezawodności, KBM PAN, Szczyrk, 319–330 (2004)Google Scholar
  9. 9.
    The Juran’s Quality Handbook. Juran, M.J., Godfrey, A.B. (Eds.). Ed. V, McGraw-Hill (1999)Google Scholar
  10. 10.
    Woropay, M.: Metoda budowy wielopoziomowych systemów do badania niezawodności z elementów o wyznaczonej a piori istotności. Rozprawy nr 18. ATR, Bydgoszcz (1983)Google Scholar
  11. 11.
    Koziolek, S., Derlukiewicz, D., Ptak, M.: Design Process Innovation of Mechanical Objects with the Use of Design for Six Sigma Methodology. Solid State Phenomena., vol. 165, 274-279, doi: 10.4028/ (2010)
  12. 12.
    Gawdzińska, K., Chybowski, L., Przetakiewicz, W.: Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality. Archives of Civil and Mechanical Engineering, doi  10.1016/j.acme.2015.11.004 (2015)
  13. 13.
    Zolkiewski, S., Testing composite materials connected in bolt joints. Journal of Vibroengineering 13, 4 (2011) 817-822.Google Scholar
  14. 14.
    Chybowski, L., Laskowski, R., Gawdzińska, K.: An overview of systems supplying water into the combustion chamber of diesel engines to decrease the amount of nitrogen oxides in exhaust gas. Journal of Marine Science and Technology, Vol. 20, No. 3, Springer Japan, 393-405, doi:  10.1007/s00773-015-0303-8 (2015)
  15. 15.
    Espiritu, J.F., Coit, d.W., Prakash, U.: Component criticality importance measures for the power industry. Electric Power Systems Research 77, 407–420 (2007)Google Scholar
  16. 16.
    Brandowski, A., Grabski, F.: Zbiory rozmyte i prawdopodobieństwo subiektywne w zagadnieniach estymacji parametrów niezawodności i bezpieczeństwa. Teoretyczne podstawy badań niezawodności i bezpieczeństwa. T 2. ITWL, Warszawa, 49–58 (2001)Google Scholar
  17. 17.
    DeGroot, M.H.: Optymalne decyzje statystyczne. PWN, Warszawa (1981)Google Scholar
  18. 18.
    Laskowski, R., Chybowski, L., Gawdzińska, K.: An engine room simulator as a tool for environmental education of marine engineers. New Contributions in Information Systems and Technologies. Advances in Intelligent Systems and Computing, Volume 354, Springer International Publishing 311-322, doi:  10.1007/978-3-319-16528-8_29 (2015)
  19. 19.
    Marczyk, J.: A New Theory of Risk and Rating. New tools for surviving in a complex and turbulent economy. Editrice, Uni service, Trento (2011)Google Scholar
  20. 20.
    Saaty, T.L.: The Analytic Hierarchy Process. New York: McGraw Hill (1980)Google Scholar
  21. 21.
    Karliński, J., Ptak, M., Działak, P., Rusiński, E.: Strength analysis of bus superstructure according to Regulation No. 66 of UN/ECE. Archives of Civil and Mechanical Engineering, 2014, vol. 14, 342-353, doi:  10.1016/j.acme.2013.12.001 (2014)
  22. 22.
    Zalewski, R., Szmidt, T.: Application of Special Granular Structures for semi-active damping of lateral beam vibrations. Engineering Structures 65, 13-20 (2014)Google Scholar
  23. 23.
    Bajkowski, J., M., Zalewski, R.: Transient response analysis of a steel beam with vacuum packed particles. Mechanics Research Communications 60, 1-6 (2014)Google Scholar
  24. 24.
    Kuo, W., Zhu, X.: Importance measures in reliability, risk, and optimization. Principles and application. John Wiley & Sons, Ltd. (2012)Google Scholar
  25. 25.
    Gawdzińska, K.: Quality Features of Metal Matrix Composite Castings. Archives of Metallurgy and Materials 58, Issue 3 (2013) 659-662, doi:  10.2478/amm-2013-0051
  26. 26.
    Pahl, G., Beitz, W.: Nauka Konstruowania. WNT (1984)Google Scholar
  27. 27.
    Dietrych, J.: System i Konstrukcja. WNT (1985)Google Scholar
  28. 28.
    Matulja, T., Fafandjel, N., Zamarin, A.: Methodology for Shipyard Production Areas Optimal Layout Design. Journal of Shipbulding, Vol. 60, No. 4, 369-377 (2009)Google Scholar
  29. 29.
    Saaty, T.: The Analytic Hierarchy Process. McGraw-Hill, Inc. USA, (1980)Google Scholar
  30. 30.
    Hadjina, M., Fafandjel, N., Matulja. T.: Shipbuilding Production Process Design Methodology Using Computer Simulation. Journal of Shipbulding, Vol. 66, No. 2, 77-91 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Marine EngineeringMaritime University of SzczecinSzczecinPoland

Personalised recommendations