Advertisement

Origin and Evolution of the Nervous System Considered from the Diffuse Nervous System of Cnidarians

  • Osamu Koizumi
Chapter

Abstract

Cnidarians have the most primitive nervous system in animal kingdom. Diffuse nerve net (called “diffuse nervous system”) covers the whole body. Cnidarians are considered the earliest metazoans to have evolved a nervous system and therefore offer possible insight into some of the fundamental properties of early nervous system. Recent studies show the cnidarian nervous system is much more complex than it was expected before. Genome projects and molecular developmental biological studies clarified indistinctness between Radiata and Bilateria. As to the nervous system, the situation is the same, namely there are many similarities between two animal groups. The cnidarian nervous system has all fundamental components with the molecular, morphological, and functional aspects. This might be also the case for the central nervous system, namely cnidarians are suggested to have primitive central nervous system.

I will make comprehensive description of the cnidarian nervous system based on morphological, functional, developmental studies in many biological levels from gene and molecule to individual, and compare with the concentrated nervous system of bilaterians. Subsequently, I will discuss the origin and evolution of the nervous system.

Keywords

Nervous system Evolution Cnidarian Nerve ring Neuropeptide 

Notes

Acknowledgments

I express deep thanks to Dr. Alfred E. Szmidt (Kyushu University) for serious checking my English and many useful comments. I was supported by research grant of Research Institute of Marine Invertebrates (Individual study-28).

References

  1. Anctil M (1989) The antiquity of monaminergic neurotransmitters: evidence from Cnidaria. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp 141–156CrossRefGoogle Scholar
  2. Anderson PA (1985) Physiology of a bidirectional, excitatory, chemical synapse. J Neurophysiol 53:821–835PubMedGoogle Scholar
  3. Anderson P (1987) Properties and pharmacology of a TTX insensitive Na+ current in neurones of the jellyfish Cyanea capillata. J Exp Biol 133:231–248Google Scholar
  4. Anderson PAV (1989) Ionic currents of the Scyphozoa. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp p267–p280CrossRefGoogle Scholar
  5. Anderson PAV, Schwab WE (1983) Action potential in neurons of the motor nerve net of Cyanea (Coelenterata). J Neurophysiol 50:671–683PubMedGoogle Scholar
  6. Anderson PAV, Spencer AN (1989) The importance of cnidarian synapses for neurobiology. J Neurobiol 20(5):435–457PubMedCrossRefGoogle Scholar
  7. Anderson PA, Holman MA, Greenberg RM (1993) Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc Natl Acad Sci U S A 90:7419–7423PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arkett SA, Spencer AN (1986) Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration, and functional significance. J Comp Physiol A 159:215–225CrossRefGoogle Scholar
  9. Ball EE, Hayward DC, Saint R, Miller DJ (2004) A simple plan- cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5:567–577PubMedCrossRefGoogle Scholar
  10. Barzilai MG, Reitzel AM, Kraus JEM, Gordon D, Technau U, Gurevitz M (2012) Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. Cell Rep 2:242–248CrossRefGoogle Scholar
  11. Berking S (2007) Generation of bilateral symmetry in Anthozoa: a model. J Theor Biol 246:477–490PubMedCrossRefGoogle Scholar
  12. Blanquet RS, Lenhoff HM (1968) Tyrosine enteroreceptor of Hydra: its function in eliciting a behavior modification. Science 159(3815):633–634PubMedCrossRefGoogle Scholar
  13. Bode HR (1992) Continuous conversion of neuron phenotype in hydra. Trends Genet 8:279–284PubMedCrossRefGoogle Scholar
  14. Bode HR (1996) The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci 109:1155–1164PubMedGoogle Scholar
  15. Bode HR, David CN (1978) Regulation of a multipotent stem cell, the interstitial cell of hydra. Prog Biophys Mol Biol 33:189–206PubMedCrossRefGoogle Scholar
  16. Bode HR, Heimfeld S, Koizumi O, Littlefield CL, Yaross MS (1988) Maintenance and regeneration of the nerve net in hydra. Am Zool 28:1053–1063CrossRefGoogle Scholar
  17. Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci U S A 89:8750–8753PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bullock TH (1943) Neuromuscular facilitation in scyphomedusae. J Cell Comp Physiol 22:251–272CrossRefGoogle Scholar
  19. Bullock TH, Hrridge GA (1965) Structure and function of the nervous system of invertebrates. Freeman, San FranciscoGoogle Scholar
  20. Campbell RD (1973) Vital marking of single cells in developing tissues: India ink injection to trace tissue movements in Hydra. J Cell Sci 23:651–661Google Scholar
  21. Campbell RD (1976) Elimination of hydra interstitial and nerve cells by means of colchicine. J Cell Sci 21:1–13PubMedGoogle Scholar
  22. Chapman JA et al (2010) The dynamic genome of Hydra. Nature 464:592–596PubMedPubMedCentralCrossRefGoogle Scholar
  23. David CN, Gierer A (1974) Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J Cell Sci 16:359–375PubMedGoogle Scholar
  24. David ND, Hager G (1994) Formation of a primitive nervous system: nerve cell differentiation in the polyp hydra. Perspect Dev Neurobiol 2:135–140PubMedGoogle Scholar
  25. Davis LE (1972) Ultrastructural evidence for the presence of nerve cells in the gastrodermis of Hydra. Z Zellforsch Mikrosk Anat 123(1):1–17PubMedCrossRefGoogle Scholar
  26. Davis LE, Burnett AL, Haynes JF (1968) Histological and ultrastructural study of the muscular and nervous system in Hydra. II. Nervous system. J Exp Zool 162:295–332CrossRefGoogle Scholar
  27. Dunne J, Javois LC, Huang LW, Bode HR (1985) A subset of cells in the nerve net of Hydra oligactis defined by a monoclonal antibody: its arrangement and development. Dev Biol 109:41–53PubMedCrossRefGoogle Scholar
  28. Epp L, Tardent P (1978) The distribution of nerve cells in Hydra attenuata Pall. Wilhelm Roux’ Arch 185:185–193CrossRefGoogle Scholar
  29. Garm A, Ekstroem P, Boudes M, Nilsson DE (2006) The rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res 325:333–343PubMedCrossRefGoogle Scholar
  30. Garm A, Poussart Y, Panafelt L, Ekstroem P, Nilsson DE (2007) The ring nerve of the box jellyfish, Tripedalia cystophora. Cell Tissue Res 329:147–157PubMedCrossRefGoogle Scholar
  31. Golubovic A, Kuhn A, Williamson M, Kalbacher H, Holstein TW, Grimmelikhuizen CJP, Guender S (2007) A peptide-gated ion channel from the freshwater poly Hydra. J Boil Chem 282(48):35098–35103CrossRefGoogle Scholar
  32. Grigoriev NG, Spafford JD, Gallin WJ, Spencer AN (1997) Voltage sensing in jellyfish Shaker K+ channels. J Exp Biol 200(Pt 22):2919–2926PubMedGoogle Scholar
  33. Grimmelikhuijzen CJP (1985) Antisera to the sequence Arg-Pheamide visualize neuronal centralization in hydroid polyps. Cell Tissue Res 241:171–182CrossRefGoogle Scholar
  34. Grimmelikhuijzen CJP, Westfall JA (1995) The nervous systems of Cnidarians. In: Bredbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhauser Verlag, Basel, pp 724–24Google Scholar
  35. Grimmelikhuijzen CJP, Dierickx K, Boer GJ (1982) Oxytocin/vasopression-like immunoreacitivity in the nervous system of Hydra. Neuroscience 7:3191–3199PubMedCrossRefGoogle Scholar
  36. Grimmelikhuijzen CJP, Graff D, Koizumi O, Westfall JA, McFarlane ID (1989) Neurons and their peptide trasmitters in coelenterates. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp 95–109CrossRefGoogle Scholar
  37. Horridge GA (1954) The nerves and muscles of medusae I. Conduction in the nervous system of Aurellia aurita. J Exp Biol 31:594–600Google Scholar
  38. Hoyle G (1960) Neuromuscular activity in the swimming sea anemone, Stomphia coccinea (Muller). J Exp Biol 37:671–688Google Scholar
  39. Josephson RK (1974) Cnidarian neurobiology. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology, reviews and new perspectives. Academic, New York, pp p245–p280CrossRefGoogle Scholar
  40. Josephson RK, Schwab WE (1979) Electrical properties of an excitable epithelium. J Gen Physiol 74:213–236PubMedCrossRefGoogle Scholar
  41. Kayal E, Roure B, Philippe H, Collins AG, Lavrov DV (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13(5):1–18Google Scholar
  42. Kerfoot PAH, Mackie GO, Meech RW, Roberts A, Singla CL (1985) Neuromascular trabsmission in the jellyfish Aglantha digitale. J Exp Biol 116:1–25PubMedGoogle Scholar
  43. Kinnamon JC, Westfall JA (1982) Types of neurons and synaptic connections at hypostome-tentacle junctions in Hydra. J Morphol 173:119–128PubMedCrossRefGoogle Scholar
  44. Klassen TL, O’Mara ML, Redstone M, Spencer AN, Gallin WJ (2008) Non-linear intramolecular interactions and voltage sensitivity of a KV1 family potassium channel from Polyorchis penicillatus (Eschscholtz 1829). J Exp Biol 211:3442–3453PubMedCrossRefGoogle Scholar
  45. Koizumi O (2002) Developmental neurobiology of hydra, a model animal of cnidarians. Can J Zool 80:1678–1689CrossRefGoogle Scholar
  46. Koizumi O (2007) Nerve ring of the hypostome in hydra: is it an origin of the central nervous system of bilaterian animals? Brain Behav Evol 69:151–159PubMedCrossRefGoogle Scholar
  47. Koizumi O, Bode HR (1986) Plasticity in the nervous system of adult hydra. I. The position-dependent expression of FMRFamide-like immunoreactivity. Dev Biol 116:407–421PubMedCrossRefGoogle Scholar
  48. Koizumi O, Bode HR (1991) Plasticity in the nervous system of adult hydra. III. Conversion of neurons to expression of a vasopressin-like immunoreactivity depends on axial location. J Neurosci 11:2011–2020PubMedGoogle Scholar
  49. Koizumi O, Maeda N (1981) Rise of feeding threshold in satiated Hydra. J Comp Physiol 142:75–80CrossRefGoogle Scholar
  50. Koizumi O, Heimfeld S, Bode HR (1988) Plasticity in the nervous system of adult hydra. II. Conversion of ganglion cells of the body column into epidermal sensory cells of the hypostome. Dev Biol 129:358–371PubMedCrossRefGoogle Scholar
  51. Koizumi O, Wilson JD, Grimmlikhuijzen CJP, Westfall JA (1989) Ultrastructural localization of RFamide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J Exp Zool 249(1):17–22PubMedCrossRefGoogle Scholar
  52. Koizumi O, Itazawa M, Mizumoto H, Minobe S, Javois JC, Grimmelikhuijzen CJP, Bode HR (1992) The nerve ring of the hypostome in hydra. I. Its structure, development and maintenance. J Comp Neurol 326:7–21PubMedCrossRefGoogle Scholar
  53. Koizumi O, Sato N, Goto C (2004) Chemical anatomy of hydra nervous system using antibodies against hydra neuropeptides: a review. Hydrobiologia 530–531:41–47Google Scholar
  54. Koizumi O, Yatabe M, Minobe S, Kurumata M, Hamada S, Nakamura M, Namikawa H (2011) Origin and evolution of the nervous system viewed from the diffuse nervous system: Nerve ring of cnidarians (Abstract). Comp Physiol Biochem (suppl) 28, 131 Abstract of ICCPB2011Google Scholar
  55. Koizumi O, Hamada S, Minobe S, Hamaguchi-Hamada K, Kurumata-Shigeto M, Nakamura M, Namikawa H (2014) The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology (Jena) 118:115–124. doi: 10.1016/j.zool.2014.10.001 Google Scholar
  56. Layden ML, Boekhout M, Martindale MQ (2012) Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139:1013–1022PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lentz T (1968) Primitive nervous systems. Yale University Press, New HavenGoogle Scholar
  58. Mackie GO (1965) Conduction in the nerve-free epithelia of siphonophores. Am Zool 5:439–453PubMedCrossRefGoogle Scholar
  59. Mackie GO (2004) Central neural circuitry in the jellyfish Aglantha . A model simple nervous system. Neurosignals 13:5–19PubMedCrossRefGoogle Scholar
  60. Mackie GO, Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313:791–793PubMedCrossRefGoogle Scholar
  61. Mackie GO, Meech RW (1995) Central circuitry in the jellyfish Aglantha digitale. II. The ring giant axon and carrier systems. J Exp Biol 198:2271–2278PubMedGoogle Scholar
  62. Mackie GO, Meech RW (2000) Central circuitry in the jellyfish Aglantha digitale. III. The rootlet and pacemaker systems. J Exp Biol 203:1797–1807PubMedGoogle Scholar
  63. Mackie GO, Passano LM (1968) Epithelial conduction in hydromedusae. J Gen Physiol 52:600–621CrossRefGoogle Scholar
  64. Mackie GO, Singla C (1975) Neurobiology of Stomotoca. I. Action systems. J Neurobiol 6(4):339–356PubMedCrossRefGoogle Scholar
  65. Mackie GO, Marx RM, Meech RW (2003) Central circuitry in the jellyfish Aglantha digitale. IV. Pathways coordinating feeding behaviour. J Exp Biol 206:2487–2505PubMedCrossRefGoogle Scholar
  66. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69(4):235–254PubMedCrossRefGoogle Scholar
  67. Martindale MR, Pang K, Finnerty JR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131(10):2463–2474PubMedCrossRefGoogle Scholar
  68. Matus D, Pang K, Marlow H, Dunn CW, Thomas GH, Martidale MQ (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 103(30):11195–11200PubMedPubMedCentralCrossRefGoogle Scholar
  69. McFarlane ID, Graff D, Grimmelikhuijzen CJP (1989) Peptidergic neurotransmitters in the Anthozoa. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp 111–128CrossRefGoogle Scholar
  70. Meech RW, Mackie GO (1993) Potassium channel family in giant motor axons of Aglantha digitale. J Neurophysiol 69:894–901PubMedGoogle Scholar
  71. Morishita F, Nitagai Y, Furukawa Y, Matsushima O, Takahashi T, Hatta M, Fujisawa T, Tunamoto T, Koizumi O (2003) Identification of a vasopressin-like immunoreactive substance in hydra. Peptides 24:17–26PubMedCrossRefGoogle Scholar
  72. Moroz L et al (2014) The ctenophore genome and the evolutionary origins of neuronal systems. Nature. doi: 10.1038/nature13400 PubMedPubMedCentralGoogle Scholar
  73. Murate M, Takahashi-Iwanaga H, Kurosaki R, Takeda M, Koizumi O (1996) Scanning electron microscopy of endodermal sensory cells of Hydra magnipapillata. Cell Tissue Res 283:455–459CrossRefGoogle Scholar
  74. Nakanishi N, Renfer E, Technau U, Rentzsch F (2011) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development 139:347–357PubMedCrossRefGoogle Scholar
  75. Nilsson DE, Gislén L, Coates MM, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205PubMedCrossRefGoogle Scholar
  76. Nilsson DE, Gislen L, Coates MM, Skogh C, Gram A (2006) Advanced optics in a jellyfish eye. Nature 435:201–205CrossRefGoogle Scholar
  77. Passano LM (1982) Scyphozoa and cubozoa. In: Shelton GAB (ed) Electrical conduction and behavior in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 149–202Google Scholar
  78. Putnam NH et al (2007) Sea anemone genomes reveals ancestral eumatazoan gene repertoire and genomic organization. Science 317:86–94PubMedCrossRefGoogle Scholar
  79. Roberts A, Mackie GO (1980) The giant axon escape system of a hydrozoan medusa, Aglantha digitale. J Exp Biol 84:303–318PubMedGoogle Scholar
  80. Robson EA (1961) Some observations on the swimming behavior of the sea anemone Stomphia coccinea. J Exp Biol 38:343–363Google Scholar
  81. Rushforth NB (1965) Behavioral studies of the coelenterate Hydra pirardi Brien. Anim Behav Suppl 1:30–42Google Scholar
  82. Rushforth NB (1967) Chemical and physical factors affecting behavior in Hydra : interactions among factors affecting behavior in Hydra. In: Corning WC, Ratner SC (eds) Chemistry of learning. Plenum Press, New York, pp 369–390CrossRefGoogle Scholar
  83. Rushforth NB (1973a) Behavior. In: Burnett AL (ed) Biology of Hydra. Academic Press, New York, pp 3–41CrossRefGoogle Scholar
  84. Rushforth NB (1973b) Behavioral modifications in coelenterates. In: Corning WC, Dale JA, Willows AOD (eds) Invertebrate learning. Plenum Press, New York, pp 123–170CrossRefGoogle Scholar
  85. Satterlie RA (1985) Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea. J Neurobiol 16:41–55PubMedCrossRefGoogle Scholar
  86. Satterlie RA (2011) Do jellyfish have central nervous systems? J Exp Biol 214:1215–1223PubMedCrossRefGoogle Scholar
  87. Satterlie RA, Spencer AN (1983) Neuronal control of locomotion in Hydrozoan medusae. A comparative study. J Comp Physiol 150:195–206CrossRefGoogle Scholar
  88. Satterlie RA, Spencer AN (1987) Organization of conducting systems in simple invertebrates: porifera, cnidaria and ctenophora. In: Ali MA (ed) Nervous system in invertebrates. Plenum Press, New York, pp 213–264CrossRefGoogle Scholar
  89. Scemes E (1989) Rethinking the role of cholinergic neurotransmitters in the Cnidaria. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp 157–166CrossRefGoogle Scholar
  90. Shelton GAB (1982) Anthozoa. In: Shelton GAB (ed) Electrical conduction and behavior in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 73–148Google Scholar
  91. Shimizu H (2002) Feeding and wounding response in Hydra suggest functional and structural polazization of the tentacle nervous system. Comp Bichem Physiol A Mol Integr Physiol 131:669–674CrossRefGoogle Scholar
  92. Shimizu H, Okabe M (2007) Evolutionary origin of autonomic regulation of physiological activities in vertebrate phyla. J Comp Physiol 193:1013–1019CrossRefGoogle Scholar
  93. Shimizu H, Koizumi O, Fujisawa T (2004) Three digestive movements in Hydra regulated by the diffuse nerve net in the body column. J Comp Physiol A 190:623–630CrossRefGoogle Scholar
  94. Singla CL (1978) Locomotion and neuromuscular system of Aglantha digitale. Cell Tissue Res 188:317–327PubMedCrossRefGoogle Scholar
  95. Skogh C, Garm A, Nilsson DE, Ekstroem P et al (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morph 267:1391–1405PubMedCrossRefGoogle Scholar
  96. Smith S, Oshida J, Bode H (1974) Inhibition of nematocyst discharge in hydra fed to repletion. Biol Bull 147:186–202CrossRefGoogle Scholar
  97. Spafford JD, Spencer AN, Gallin WJ (1999) Genomic organization of a voltage-gated Na+ channel in a hydrozoan jellyfish: insights into the evolution of voltage-gated Na+ channel genes. Receptors Cannels 6(6):493–506Google Scholar
  98. Spencer AN (1979) Neurobiology of Polyorchis. 11. Structure of effector systems. J Neurobiol 10(2):95–117PubMedCrossRefGoogle Scholar
  99. Spencer AN (1982) The physiology of a coelenterate neuromuscular synapse. J Comp Physiol 148:353–363CrossRefGoogle Scholar
  100. Spencer AN (1989) Chemical and electrical synaptic transmission in the cnidaria. In: Anderson PAV (ed) Evolution of the first nervous system. Plenum Press, New York, pp 33–54CrossRefGoogle Scholar
  101. Spencer AN, Satterlie RA (1980) Electrical and dye coupling in an identified group of neurons in a coelenterate. J Neurobiol 11:13–19PubMedCrossRefGoogle Scholar
  102. Spencer AN, Schwab WE (1982) Hydrozoa. In: Shelton GAB (ed) Electrical conduction and behavior in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 73–148Google Scholar
  103. Spencer AN, Przysiezniak J, Acosta-Urquidi J, Basarsky TA (1989) Presynaptic spike broadening reduces junctional potential amplitude. Nature 340:636–663PubMedCrossRefGoogle Scholar
  104. Takahashi T, Muneoka Y, Lohmann J, deHaro LM, Solleder G, Bosch TCG, David CN, Bode HR, Koizumi O, Shimizu H, Hatta M, Fujisawa T, Sugiyama T (1997) Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proc Natl Acad Sci U S A 94:1241–1246PubMedPubMedCentralCrossRefGoogle Scholar
  105. Takahashi T, Koizumi O, Ariura Y, Romanovitch A, Bosch TCG, Kobayakawa Y, Mohri S, Bode H, Yum S, Hatta M, Fujisawa T (2000) A novel neuropeptide, Hym355, positively regulates neuron differentiation in hydra. Development 127:997–1005PubMedGoogle Scholar
  106. Takahashi T, Kobayakawa Y, Muneoka Y, Fujisawa Y, Mohri S, Hatta M, Shimizu H, Fujisawa T, Sugiyama T, Takahara M, Yanagi K, Koizumi O (2003) Identification of a new member of the GLWamide peptide family: physiological activity and cellular localization in cnidarian polyps. Comp Biochem Physiol Part B 135:309–324CrossRefGoogle Scholar
  107. Takahashi T, Hayakawa E, Koizumi O, Fujisawa T (2008) Neuropeptides and their functions in Hydra. Acta Biol Hung 59:227–235PubMedCrossRefGoogle Scholar
  108. Takahashi-Iwanaga H, Koizumi O, Fujita T (1994) Scanning electron microscopy of the muscle system of Hydra magnipapillata. Cell Tissue Res 277:79–86CrossRefGoogle Scholar
  109. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138:1447–1458PubMedPubMedCentralCrossRefGoogle Scholar
  110. Watanabe H, Fujisawa T, Holstein TW et al (2009) Cnidarians and the evolutionary origin of the nervous system. Develop Growth Differ 51:167–183CrossRefGoogle Scholar
  111. Watanabe H, Kuhn A, Fushiki M, Agata K, Oezbek S, Fujisawa T, Holstein TW (2014) Sequential actions of b-catenin and Bmp pattern the oral nerve net in Nematostella vectensis. Nature Commun. doi: 10.1038/ncomms6536 Google Scholar
  112. Weber C, Singla CL, Kerpoot PAH (1982) Microanatomy of subumbellar motor innervation in Aglantha digitale (Hydromedusae: Trachylina). Cell Tissue Res 223:305–312PubMedCrossRefGoogle Scholar
  113. Westfall J (1973) Ultrastructural evidence for a granule-containing sensory-motor-interneuron in Hydra littoralis. J Ultrastruct Res 42:268–282PubMedCrossRefGoogle Scholar
  114. Westfall JA (1987) Ultrastructure of invertebrate synapses. In: Ali MA (ed) Neurvous systems in invertebrates. Plenum Press, New YorkGoogle Scholar
  115. Westfall J, Kinnamon JC (1978) A second sensory-motor-interneuron with neurosecretory granules in Hydra. J Neurocytol 7:365–379PubMedCrossRefGoogle Scholar
  116. Westfall JA, Rogers RA (1990) A combined high-voltage and scanning electron microscopic study of two types of sensory cells dissociated from the gastrodermis of Hydra. J Submicrosc Cytol Pathol 22:185–190PubMedGoogle Scholar
  117. Westfall JA, Townsend JW (1977) Scanning electron stereomicroscopy of the gastrodermis of Hydra. Scan Electron Microsc 2:623–629Google Scholar
  118. Westfall JA, Yamataka S, Enos PD (1971) Ultrastructural evidence of polarized synapses in the nerve net of Hydra. J Cell Biol 51:318–323PubMedPubMedCentralCrossRefGoogle Scholar
  119. Westfall JA, Wilson JD, Rogers RA, Kinnamon JC (1991) Multifunctional features of a gastrodermal sensory cell in Hydra: three-dimensional study. J Neurocytol 20:251–261PubMedCrossRefGoogle Scholar
  120. Yaross MS, Westerfield J, Javois LC, Bode HR (1986) Nerve cells in hydra: Monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue. Dev Biol 114:225–237PubMedCrossRefGoogle Scholar
  121. Yum S, Takahashi T, Koizumi O, Ariura Y, Kobayakawa Y, Mohri S, Fujisawa T (1998) A novel neuropeptide, Hym-176, induces contraction of the ectodermal muscle in Hydra. Biochem Biophys Res Commun 248:584–590PubMedCrossRefGoogle Scholar
  122. Yuura H (2008) Ultrastructural study on the nerve ring in hydra. Master thesis, Fukuoka Women’s UniversityGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Environmental ScienceFukuoka Women’s UniversityFukuokaJapan

Personalised recommendations