The New Systematics of Scleractinia: Integrating Molecular and Morphological Evidence

  • Marcelo V. Kitahara
  • Hironobu Fukami
  • Francesca Benzoni
  • Danwei Huang
Chapter

Abstract

The taxonomy of scleractinian corals has traditionally been established based on morphology at the “macro” scale since the time of Carl Linnaeus. Taxa described using macromorphology are useful for classifying the myriad of growth forms, yet new molecular and small-scale morphological data have challenged the natural historicity of many familiar groups, motivating multiple revisions at every taxonomic level. In this synthesis of scleractinian phylogenetics and systematics, we present the most current state of affairs in the field covering both zooxanthellate and azooxanthellate taxa, focusing on the progress of our phylogenetic understanding of this ecologically-significant clade, which today is supported by rich sets of molecular and morphological data. It is worth noting that when DNA sequence data was first used to investigate coral evolution in the 1990s, there was no concerted effort to use phylogenetic information to delineate problematic taxa. In the last decade, however, the incompatibility of coral taxonomy with their evolutionary history has become much clearer, as molecular analyses for corals have been improved upon technically and expanded to all major scleractinian clades, shallow and deep. We describe these methodological developments and summarise new taxonomic revisions based on robust inferences of the coral tree of life. Despite these efforts, there are still unresolved sections of the scleractinian phylogeny, resulting in uncertain taxonomy for several taxa. We highlight these and propose a way forward for the taxonomy of corals.

Keywords

Azooxanthellate Cnidaria Coral Integrative taxonomy Phylogenetics Reef Species boundaries Zooxanthellae 

References

  1. Addamo AM, Reimer JD, Taviani M et al (2012) Desmophyllum dianthus (Esper, 1794) in the scleractinian phylogeny and its intraspecific diversity. PLoS One 7:e50215. doi:10.1371/journal.pone.0050215 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Addamo AM, García-Jiménez R, Taviani M, Machordom A (2015) Development of microsatellite markers in the deep-sea cup coral Desmophyllum dianthus by 454 sequencing and cross-species amplifications in Scleractinia order. J Hered 106:322–330. doi:10.1093/jhered/esv010 PubMedCrossRefGoogle Scholar
  3. Adjeroud M, Guérécheau A, Vidal-Dupiol J et al (2014) Genetic diversity, clonality and connectivity in the scleractinian coral Pocillopora damicornis: a multi-scale analysis in an insular, fragmented reef system. Mar Biol 161:531–541. doi:10.1007/s00227-013-2355-9 CrossRefGoogle Scholar
  4. Alloiteau J (1952) Embranchement des coelentérés. In: Piveteau J (ed) Traité de paléontologie. Tome premier. Masson, Paris, pp 376–684Google Scholar
  5. Alloiteau J (1957) Contribution à la systématique des madréporaires fossiles. Centre National de la Recherche Scientifique, ParisGoogle Scholar
  6. Appeltans W, Ahyong ST, Anderson G et al (2012) The magnitude of global marine species diversity. Curr Biol 22:1–14. doi:10.1016/j.cub.2012.09.036 CrossRefGoogle Scholar
  7. Arrigoni R, Stefani F, Pichon M et al (2012) Molecular phylogeny of the Robust clade (Faviidae, Mussidae, Merulinidae, and Pectiniidae): an Indian Ocean perspective. Mol Phylogenet Evol 65:183–193. doi:10.1016/j.ympev.2012.06.001 PubMedCrossRefGoogle Scholar
  8. Arrigoni R, Kitano YF, Stolarski J et al (2014a) A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zool Scr 43:661–688. doi:10.1111/zsc.12072 CrossRefGoogle Scholar
  9. Arrigoni R, Richards ZT, Chen CA et al (2014b) Taxonomy and phylogenetic relationships of the coral genera Australomussa and Parascolymia (Scleractinia, Lobophylliidae). Contrib Zool 83:195–215Google Scholar
  10. Arrigoni R, Terraneo TI, Galli P, Benzoni F (2014c) Lobophylliidae (Cnidaria, Scleractinia) reshuffled: pervasive non-monophyly at genus level. Mol Phylogenet Evol 73:60–64. doi:10.1016/j.ympev.2014.01.010 PubMedCrossRefGoogle Scholar
  11. Arrigoni R, Berumen ML, Terraneo TI et al (2015) Forgotten in the taxonomic literature: resurrection of the scleractinian coral genus Sclerophyllia (Scleractinia, Lobophylliidae) from the Arabian Peninsula and its phylogenetic relationships. Syst Biodivers 13:140–163. doi:10.1080/14772000.2014.978915 CrossRefGoogle Scholar
  12. Ayre DJ, Willis BL (1988) Population structure in the coral Pavona cactus: clonal genotypes show little phenotypic plasticity. Mar Biol 99:495–505. doi:10.1007/BF00392557 CrossRefGoogle Scholar
  13. Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci U S A 107:11877–11882. doi:10.1073/pnas.0914380107 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Benzoni F, Stefani F (2012) Porites fontanesii, a new species of hard coral (Scleractinia, Poritidae) from the southern Red Sea, the Gulf of Tadjoura, and the Gulf of Aden, and its phylogenetic relationships within the genus. Zootaxa 3447:56–68Google Scholar
  15. Benzoni F, Stefani F, Stolarski J et al (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 76:35–54Google Scholar
  16. Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries in the genus Psammocora (Cnidaria, Scleractinia). Zool J Linn Soc 160:421–456. doi:10.1111/j.1096-3642.2010.00622.x CrossRefGoogle Scholar
  17. Benzoni F, Arrigoni R, Stefani F, Pichon M (2011) Phylogeny of the coral genus Plesiastrea (Cnidaria, Scleractinia). Contrib Zool 80:231–249Google Scholar
  18. Benzoni F, Arrigoni R, Stefani F et al (2012a) Phylogenetic position and taxonomy of Cycloseris explanulata and C. wellsi (Scleractinia: Fungiidae): lost mushroom corals find their way home. Contrib Zool 81:125–146Google Scholar
  19. Benzoni F, Arrigoni R, Stefani F, Stolarski J (2012b) Systematics of the coral genus Craterastrea (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Syst Biodivers 10:417–433. doi:10.1080/14772000.2012.744369 CrossRefGoogle Scholar
  20. Benzoni F, Arrigoni R, Waheed Z et al (2014) Phylogenetic relationships and revision of the genus Blastomussa (Cnidaria: Anthozoa: Scleractinia) with description of a new species. Raffles Bull Zool 62:358–378Google Scholar
  21. Best MB, Boekschoten GJ, Oosterbaan A (1984) Species concept and ecomorph variation in living and fossil Scleractinia. Palaeontogr Am 54:70–79Google Scholar
  22. Bongaerts P, Frade PR, Ogier JJ et al (2013) Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2–60 m) on a Caribbean reef. BMC Evol Biol 13:205. doi:10.1186/1471-2148-13-205 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boulay JN, Hellberg ME, Cortés J, Baums IB (2014) Unrecognized coral species diversity masks differences in functional ecology. Proc R Soc B Biol Sci 281:20131580. doi:10.1098/rspb.2013.1580 CrossRefGoogle Scholar
  24. Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238. doi:10.1016/S0022-0981(98)00097-5 CrossRefGoogle Scholar
  25. Budd AF (1993) Variation within and among morphospecies of Montastraea. Cour Forsch Inst Senckenb 164:241–254Google Scholar
  26. Budd AF (2009) Encyclopedia of life synthesis meeting report: systematics and evolution of scleractinian corals. National Museum of Natural History, Smithsonian Institution, Washington, DCGoogle Scholar
  27. Budd AF, Smith ND (2005) Diversification of a new Atlantic clade of scleractinian reef corals: insights from phylogenetic analysis of morphologic and molecular data. Paleontol Soc Pap 11:103–128Google Scholar
  28. Budd AF, Stolarski J (2009) Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zool 90:142–165. doi:10.1111/j.1463-6395.2008.00345.x CrossRefGoogle Scholar
  29. Budd AF, Stolarski J (2011) Corallite wall and septal microstructure in scleractinian reef corals: comparison of molecular clades within the family Faviidae. J Morphol 272:66–88. doi:10.1002/jmor.10899 PubMedCrossRefGoogle Scholar
  30. Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427. doi:10.1093/icb/icq062 PubMedCrossRefGoogle Scholar
  31. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529. doi:10.1111/j.1096-3642.2012.00855.x CrossRefGoogle Scholar
  32. Cairns SD (1984) An application of phylogenetic analysis to the Scleractinia: family Fungiidae. Palaeontogr Am 54:49–57Google Scholar
  33. Cairns SD (1997) A generic revision and phylogenetic analysis of the Turbinoliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 591:1–55. doi:10.5479/si.00810282.591 CrossRefGoogle Scholar
  34. Cairns SD (1999) Species richness of recent Scleractinia. Atoll Res Bull 459:1–12CrossRefGoogle Scholar
  35. Cairns SD (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 615:1–75. doi:10.5479/si.00810282.615 CrossRefGoogle Scholar
  36. Cairns SD (2009) Phylogenetic list of 722 valid recent azooxanthellate scleractinian species, with their junior synonyms and depth ranges. In: Roberts JM, Wheeler A, Freiwald A, Cairns SD (eds) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, Online appendix. http://www.lophelia.org/online-appendices Google Scholar
  37. Chen CA, Yu J-K (2000) Universal primers for amplification of mitochondrial small subunit ribosomal RNA-encoding gene in scleractinian corals. Mar Biotechnol 2:146–153. doi:10.1007/s101269900018 PubMedCrossRefGoogle Scholar
  38. Chen CA, Odorico DM, ten Lohuis M et al (1995) Systematic relationships within the Anthozoa (Cnidaria: Anthozoa) using the 5′-end of the 28S rDNA. Mol Phylogenet Evol 4:175–183PubMedCrossRefGoogle Scholar
  39. Chen CA, Wallace CC, Yu J-K, Wei NV (2000) Strategies for amplification by polymerase chain reaction of the complete sequence of the gene encoding nuclear large subunit ribosomal RNA in corals. Mar Biotechnol 2:558–570PubMedCrossRefGoogle Scholar
  40. Chen CA, Wallace CC, Wolstenholme JK (2002) Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phylogenet Evol 23:137–149. doi:10.1016/S1055-7903(02)00008-8 PubMedCrossRefGoogle Scholar
  41. Chen CA, Chang CC, Wei NV et al (2004) Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zool Stud 43:759–771Google Scholar
  42. Chen I-P, Tang C-Y, Chiou C-Y et al (2009) Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Mar Biotechnol 11:141–152. doi:10.1007/s10126-008-9129-2 PubMedCrossRefGoogle Scholar
  43. Chevalier J-P, Beauvais L (1987) Ordre des scléractiniaires: XI. Systématique. In: Grassé P-P, Doumenc D (eds) Traité de zoologie. Tome III. Cnidaires: Anthozoaires. Masson, Paris, pp 679–764Google Scholar
  44. Concepcion GT, Medina M, Toonen RJ (2006) Noncoding mitochondrial loci for corals. Mol Ecol Notes 6:1208–1211. doi:10.1111/j.1471-8286.2006.01493.x CrossRefGoogle Scholar
  45. Concepcion GT, Polato NR, Baums IB, Toonen RJ (2010) Development of microsatellite markers from four Hawaiian corals: Acropora cytherea, Fungia scutaria, Montipora capitata and Porites lobata. Conserv Genet Resour 2:11–15. doi:10.1007/s12686-009-9118-4 CrossRefGoogle Scholar
  46. Cuif J-P, Perrin C (1999) Micromorphology and microstructure as expressions of scleractinian skeletogenesis in Favia fragum (Esper, 1795) (Faviidae, Scleractinia). Zoosystema 21:137–156Google Scholar
  47. Cuif J-P, Lecointre G, Perrin C et al (2003) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32:459–473CrossRefGoogle Scholar
  48. Curnick DJ, Head CEI, Huang D et al (2015) Setting evolutionary-based conservation priorities for a phylogenetically data-poor taxonomic group (Scleractinia). Anim Conserv. doi:10.1111/acv.12185 Google Scholar
  49. Dai C-F, Horng S (2009a) Scleractinia fauna of Taiwan. I. The complex group. National Taiwan University, TaipeiGoogle Scholar
  50. Dai C-F, Horng S (2009b) Scleractinia fauna of Taiwan. II. The robust group. National Taiwan University, TaipeiGoogle Scholar
  51. Dai C-F, Fan T-Y, Yu J-K (2000) Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar Ecol Prog Ser 201:179–187. doi:10.3354/meps201179 CrossRefGoogle Scholar
  52. Daly M, Fautin DG, Cappola VA (2003) Systematics of the Hexacorallia (Cnidaria: Anthozoa). Zool J Linn Soc 139:419–437. doi:10.1046/j.1096-3642.2003.00084.x CrossRefGoogle Scholar
  53. Davies SW, Rahman M, Meyer E et al (2013) Novel polymorphic microsatellite markers for population genetics of the endangered Caribbean star coral, Montastraea faveolata. Mar Biodivers 43:167–172. doi:10.1007/s12526-012-0133-4 CrossRefGoogle Scholar
  54. Diekmann OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221–233. doi:10.1007/s002270100584 CrossRefGoogle Scholar
  55. Dunn CW, Hejnol A, Matus DQ et al (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614 PubMedCrossRefGoogle Scholar
  56. Emblem Å, Karlsen BO, Evertsen J, Johansen SD (2011) Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Mol Phylogenet Evol 61:495–503. doi:10.1016/j.ympev.2011.07.012 PubMedCrossRefGoogle Scholar
  57. Esper EJC (1795) Fortsetzungen der Pflanzenthiere in Abbildungen nach der Natur mit Farben erleuchtet nebst Beschreibungen. Raspeschen Buchhandlung, NürnbergGoogle Scholar
  58. Ezaki Y (1997) The Permian coral Numidiaphyllum: new insights into anthozoan phylogeny and Triassic scleractinian origins. Palaeontology 40:1–40Google Scholar
  59. Ezaki Y (2000) Palaeoecological and phylogenetic implications of a new scleractiniamorph genus from Permian sponge reefs, south China. Palaeontology 43:199–217. doi:10.1111/1475-4983.00124 CrossRefGoogle Scholar
  60. Faircloth BC, McCormack JE, Crawford NG et al (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol 61:717–726. doi:10.1093/sysbio/sys004 PubMedCrossRefGoogle Scholar
  61. Farris JS, Källersjö M, Kluge AG, Bult C (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  62. Flot J-F (2007) CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Mol Ecol Notes 7:974–977CrossRefGoogle Scholar
  63. Flot J-F (2010) SeqPHASE: a web tool for interconverting phase input/output files and fasta sequence alignments. Mol Ecol Resour 10:162–166. doi:10.1111/j.1755-0998.2009.02732.x PubMedCrossRefGoogle Scholar
  64. Flot J-F, Tillier S (2006) Molecular phylogeny and systematics of the scleractinian coral genus Pocillopora in Hawaii. Proc 10th Int Coral Reef Symp, pp 24–29Google Scholar
  65. Flot J-F, Tillier A, Samadi S, Tillier S (2006) Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes 6:627–630. doi:10.1111/j.1471-8286.2006.01355.x CrossRefGoogle Scholar
  66. Flot J-F, Magalon H, Cruaud C et al (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. C R Biol 331:239–247. doi:10.1016/j.crvi.2007.12.003 PubMedCrossRefGoogle Scholar
  67. Flot J-F, Couloux A, Tillier S (2010) Haplowebs as a graphical tool for delimiting species: a revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol 10:372. doi:10.1186/1471-2148-10-372 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Flot J-F, Blanchot J, Charpy L et al (2011) Incongruence between morphotypes and genetically delimited species in the coral genus Stylophora: phenotypic plasticity, morphological convergence, morphological stasis or interspecific hybridization? BMC Ecol 11:22. doi:10.1186/1472-6785-11-22 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Forskål P (1775) Descriptiones animalium, avium, amphibiorum, piscium, insectorum, vermium. Quae In Itinere Orientali Observavit Petrus Forskål. ex officina Mölleri, HauniæGoogle Scholar
  70. Forsman ZH, Guzman HM, Chen CA et al (2005) An ITS region phylogeny of Siderastrea (Cnidaria: Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24:343–347. doi:10.1007/s00338-005-0497-z CrossRefGoogle Scholar
  71. Forsman ZH, Hunter CL, Fox GE, Wellington GM (2006) Is the ITS region the solution to the “species problem” in corals? Intragenomic variation, and alignment permutations in Porites, Siderastrea and outgroup taxa. Proc 10th Int Coral Reef Symp, pp 14–23Google Scholar
  72. Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:45. doi:10.1186/1471-2148-9-45 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Forsman ZH, Concepcion GT, Haverkort RD et al (2010) Ecomorph or endangered coral? DNA and microstructure reveal Hawaiian species complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli. PLoS One 5:e15021. doi:10.1371/journal.pone.0015021 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Forsman Z, Wellington GM, Fox GE, Toonen RJ (2015) Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits. Peer J 3:e751. doi:10.7717/peerj.751 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Foster AB (1979a) Environmental variation in a fossil scleractinian coral. Lethaia 12:245–264. doi:10.1111/j.1502-3931.1979.tb01004.x CrossRefGoogle Scholar
  76. Foster AB (1979b) Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol 39:25–54. doi:10.1016/0022-0981(79)90003-0 CrossRefGoogle Scholar
  77. Foster AB (1980) Environmental variation in skeletal morphology within the Caribbean reef corals Montastraea annularis and Siderastrea siderea. Bull Mar Sci 30:678–709Google Scholar
  78. Fukami H (2008) Short review: molecular phylogenetic analyses of reef corals. Galaxea 10:47–55CrossRefGoogle Scholar
  79. Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417CrossRefGoogle Scholar
  80. Fukami H, Nomura K (2009) Existence of a cryptic species of Montastraea valenciennesi (Milne Edwards and Haime, 1848) in Wakayama, southern Honshu, Japan [in Japanese]. J Jpn Coral Reef Soc 11:25–31CrossRefGoogle Scholar
  81. Fukami H, Omori M, Hatta M (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696PubMedCrossRefGoogle Scholar
  82. Fukami H, Omori M, Shimoike K et al (2003) Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar Biol 142:679–684. doi:10.1007/s00227-002-1001-8 Google Scholar
  83. Fukami H, Budd AF, Levitan DR et al (2004a) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337. doi:10.1111/j.0014-3820.2004.tb01648.x PubMedCrossRefGoogle Scholar
  84. Fukami H, Budd AF, Paulay G et al (2004b) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835. doi:10.1038/nature02339 PubMedCrossRefGoogle Scholar
  85. Fukami H, Chen CA, Budd AF et al (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222. doi:10.1371/journal.pone.0003222 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gill GA (1980) The fulturae (“compound synapticulae”), their structure and reconsideration of their systematic value. Acta Palaeontol Pol 25:301–310Google Scholar
  87. Gittenberger A, Hoeksema BW (2006) Phenotypic plasticity revealed by molecular studies on reef corals of Fungia (Cycloseris) spp. (Scleractinia: Fungiidae) near river outlets. Contrib Zool 75:195–201Google Scholar
  88. Gittenberger A, Reijnen BT, Hoeksema BW (2011) A molecularly based phylogeny reconstruction of mushroom corals (Scleractinia: Fungiidae) with taxonomic consequences and evolutionary implications for life history traits. Contrib Zool 80:107–132Google Scholar
  89. Graus RR, Macintyre IG (1976) Light control of growth form in colonial reef corals: computer simulation. Science 193:895–897. doi:10.1126/science.193.4256.895 PubMedCrossRefGoogle Scholar
  90. Graus RR, Macintyre IG (1989) The zonation patterns of Caribbean coral reefs as controlled by wave and light energy input, bathymetric setting and reef morphology: computer simulation experiments. Coral Reefs 8:9–18CrossRefGoogle Scholar
  91. Hatta M, Fukami H, Wang W et al (1999) Reproductive and genetic evidence for a reticulate evolutionary history of mass-spawning corals. Mol Biol Evol 16:1607–1613PubMedCrossRefGoogle Scholar
  92. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580. doi:10.1093/molbev/msp274 PubMedCrossRefGoogle Scholar
  93. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24. doi:10.1186/1471-2148-6-24 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Heyward AJ, Stoddart JA (1985) Genetic structure of two species of Montipora on a patch reef: conflicting results from electrophoresis and histocompatibility. Mar Biol 85:117–121CrossRefGoogle Scholar
  95. Ho M-J, Dai C-F (2014) Coral recruitment of a subtropical coral community at Yenliao Bay, northern Taiwan. Zool Stud 53:5. doi:10.1186/1810-522X-53-5 CrossRefGoogle Scholar
  96. Hoeksema BW (1989) Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zool Verh Leiden 254:1–295Google Scholar
  97. Hoeksema BW (1991) Evolution of body size in mushroom corals (Scleractinia: Fungiidae) and its ecomorphological consequences. Neth J Zool 41:112–129. doi:10.1163/156854291X00072 CrossRefGoogle Scholar
  98. Hoeksema BW (1993) Historical biogeography of Fungia (Pleuractis) spp. (Scleractinia: Fungiidae), including a new species from the Seychelles. Zool Meded Leiden 67:639–654Google Scholar
  99. Hoeksema BW (2012) Forever in the dark: the cave-dwelling azooxanthellate reef coral Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae). Zoo Keys 228:21–37. doi:10.3897/zookeys.228.3798 PubMedGoogle Scholar
  100. Hoffmeister JE (1926) The species problem in corals. Am J Sci 12:151–156. doi:10.2475/ajs.s5-12.68.151 CrossRefGoogle Scholar
  101. Huang D (2012) Threatened reef corals of the world. PLoS One 7:e34459. doi:10.1371/journal.pone.0034459 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Huang D, Roy K (2013) Anthropogenic extinction threats and future loss of evolutionary history in reef corals. Ecol Evol 3:1184–1193. doi:10.1002/ece3.527 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Philos Trans R Soc B Biol Sci 370:20140010. doi:10.1098/rstb.2014.0010 CrossRefGoogle Scholar
  104. Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174. doi:10.1007/s00239-008-9069-5 PubMedCrossRefGoogle Scholar
  105. Huang D, Meier R, Todd PA, Chou LM (2009) More evidence for pervasive paraphyly in scleractinian corals: systematic study of southeast Asian Faviidae (Cnidaria; Scleractinia) based on molecular and morphological data. Mol Phylogenet Evol 50:102–116. doi:10.1016/j.ympev.2008.10.012 PubMedCrossRefGoogle Scholar
  106. Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the “Bigmessidae”: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol Biol 11:37. doi:10.1186/1471-2148-11-37 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Huang D, Benzoni F, Arrigoni R et al (2014a) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43:531–548. doi:10.1111/zsc.12061 CrossRefGoogle Scholar
  108. Huang D, Benzoni F, Fukami H et al (2014b) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355. doi:10.1111/zoj.12140 CrossRefGoogle Scholar
  109. Hunter CL, Morden CW, Smith CM (1997) The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc 8th Int Coral Reef Symp 2:1599–1602Google Scholar
  110. Isomura N, Iwao K, Fukami H (2013) Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia) in the Pacific: fertilization and larval survival rates. PLoS One 8:e56701. doi:10.1371/journal.pone.0056701 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Janiszewska K, Stolarski J, Benzerara K et al (2011) A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals. J Morphol 272:191–203. doi:10.1002/jmor.10906 PubMedCrossRefGoogle Scholar
  112. Janiszewska K, Jaroszewicz J, Stolarski J (2013) Skeletal ontogeny in basal scleractinian micrabaciid corals. J Morphol 274:243–257. doi:10.1002/jmor.20085 PubMedCrossRefGoogle Scholar
  113. Janiszewska K, Stolarski J, Kitahara MV et al (2015) Microstructural disparity between basal micrabaciids and other Scleractinia: new evidence from Neogene Stephanophyllia. Lethaia. doi:10.1111/let.12119 Google Scholar
  114. Johnson KG (1998) A phylogenetic test of accelerated turnover in Neogene Caribbean brain corals (Scleractinia: Faviidae). Palaeontology 41:1247–1268Google Scholar
  115. Kayal E, Roure B, Philippe H et al (2013) Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evol Biol 13:5. doi:10.1186/1471-2148-13-5 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Keshavmurthy S, Yang S-Y, Alamaru A et al (2013) DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci Rep 3:1520. doi:10.1038/srep01520 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kitahara MV, Cairns SD, Miller DJ (2010a) Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species. Syst Biodivers 8:91–118. doi:10.1080/14772000903571088 CrossRefGoogle Scholar
  118. Kitahara MV, Cairns SD, Stolarski J et al (2010b) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS One 5:e11490. doi:10.1371/journal.pone.0011490 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kitahara MV, Stolarski J, Cairns SD et al (2012) The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebr Syst 26:303–315. doi:10.1071/IS11053 CrossRefGoogle Scholar
  120. Kitahara MV, Cairns SD, Stolarski J, Miller DJ (2013) Deltocyathiidae, an early-diverging family of Robust corals (Anthozoa, Scleractinia). Zool Scr 42:201–212. doi:10.1111/j.1463-6409.2012.00575.x CrossRefGoogle Scholar
  121. Kitahara MV, Lin M-F, Forêt S et al (2014) The “naked coral” hypothesis revisited – evidence for and against scleractinian monophyly. PLoS One 9:e94774. doi:10.1371/journal.pone.0094774 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Kitano YF, Obuchi M, Uyeno D et al (2013) Phylogenetic and taxonomic status of the coral Goniopora stokesi and related species (Scleractinia: Poritidae) in Japan based on molecular and morphological data. Zool Stud 52:25. doi:10.1186/1810-522X-52-25 CrossRefGoogle Scholar
  123. Kitano YF, Benzoni F, Arrigoni R et al (2014) A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses. PLoS One 9:e98406. doi:10.1371/journal.pone.0098406 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Knittweis L, Kraemer WE, Timm J, Kochzius M (2009) Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conserv Genet 10:241–249. doi:10.1007/s10592-008-9566-5 CrossRefGoogle Scholar
  125. Knowlton N, Budd AF (2001) Recognizing coral species past and present. In: Jackson JBC, Lidgard S, McKinney FK (eds) Evolutionary patterns: growth, form, and tempo in the fossil record. University of Chicago Press, Chicago, pp 97–119Google Scholar
  126. Knowlton N, Weil E, Weigt LA, Guzman HM (1992) Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–333PubMedCrossRefGoogle Scholar
  127. Knowlton N, Mate JL, Guzman HM et al (1997) Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in central America (Panama and Honduras). Mar Biol 127:705–711. doi:10.1007/s002270050061 CrossRefGoogle Scholar
  128. Ladner JT, Palumbi SR (2012) Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Mol Ecol 21:2224–2238. doi:10.1111/j.1365-294X.2012.05528.x PubMedCrossRefGoogle Scholar
  129. Lam KKY, Morton B (2003) Morphological and ITS1, 5.8S, and partial ITS2 ribosomal DNA sequence distinctions between two species of Platygyra (Cnidaria: Scleractinia) from Hong Kong. Mar Biotechnol 5:555–567PubMedCrossRefGoogle Scholar
  130. Lamarck J-BP (1801) Système des animaux sans vertèbres. Lamarck et Deterville, ParisGoogle Scholar
  131. Lang JC (1984) Whatever works: the variable importance of skeletal and of non-skeletal characters in scleractinian taxonomy. Palaeontogr Am 54:18–44Google Scholar
  132. Le Goff MC, Rogers AD (2002) Characterization of 10 microsatellite loci for the deep-sea coral Lophelia pertusa (Linnaeus 1758). Mol Ecol Notes 2:164–166. doi:10.1046/j.1471-8286.2002.00190.x CrossRefGoogle Scholar
  133. Le Goff-Vitry MC, Rogers AD, Baglow D (2004) A deep-sea slant on the molecular phylogeny of the Scleractinia. Mol Phylogenet Evol 30:167–177. doi:10.1016/S1055-7903(03)00162-3 PubMedCrossRefGoogle Scholar
  134. Lemmon AR, Emme SA, Lemmon EM (2012) Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst Biol 61:727–744. doi:10.1093/sysbio/sys049 PubMedCrossRefGoogle Scholar
  135. Levitan DR, Fukami H, Jara J et al (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323PubMedCrossRefGoogle Scholar
  136. Levitan DR, Fogarty ND, Jara J et al (2011) Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65:1254–1270. doi:10.1111/j.1558-5646.2011.01235.x PubMedCrossRefGoogle Scholar
  137. Licuanan WY (2009) Guide to the common corals of the Bolinao-Anda reef complex, northwestern Philippines. U.P. Marine Science Institute, DilimanGoogle Scholar
  138. Lin M-F, Luzon KS, Licuanan WY et al (2011) Seventy-four universal primers for characterizing the complete mitochondrial genomes of scleractinian corals (Cnidaria; Anthozoa). Zool Stud 50:513–524Google Scholar
  139. Lin M-F, Kitahara MV, Luo H et al (2014) Mitochondrial genome rearrangements in the Scleractinia/Corallimorpharia complex: implications for coral phylogeny. Genome Biol Evol 6:1086–1095. doi:10.1093/gbe/evu084 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Linnaeus C (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii, HolmiæGoogle Scholar
  141. Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24:2542–2543PubMedCrossRefGoogle Scholar
  142. Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514PubMedCrossRefGoogle Scholar
  143. Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091PubMedCrossRefGoogle Scholar
  144. Lopez JV, Knowlton N (1997) Discrimination of species in the Montastraea annularis complex using multiple genetic loci. Proc 8th Int Coral Reef Symp 2:1613–1618Google Scholar
  145. Lopez JV, Kersanach R, Rehner SA, Knowlton N (1999) Molecular determination of species boundaries in corals: genetic analysis of the Montastraea annularis complex using amplified fragment length polymorphisms and a microsatellite marker. Biol Bull 196:80–93PubMedCrossRefGoogle Scholar
  146. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  147. Lowenstein JM (1985) Molecular approaches to the identification of species. Am Sci 73:541–547Google Scholar
  148. Loya Y, Sakai K, Heyward A (2009) Reproductive patterns of fungiid corals in Okinawa, Japan. Galaxea 11:119–129CrossRefGoogle Scholar
  149. Luck DG, Forsman ZH, Toonen RJ et al (2013) Polyphyly and hidden species among Hawai’i’s dominant mesophotic coral genera, Leptoseris and Pavona (Scleractinia: Agariciidae). Peer J 1:e132. doi:10.7717/peerj.132 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30PubMedCrossRefGoogle Scholar
  151. Magalon H, Samadi S, Richard M et al (2004) Development of coral and zooxanthella-specific microsatellites in three species of Pocillopora (Cnidaria, Scleractinia) from French Polynesia. Mol Ecol Notes 4:206–208CrossRefGoogle Scholar
  152. Maier E, Tollrian R, Nürnberger B (2001) Development of species-specific markers in an organism with endosymbionts: microsatellites in the scleractinian coral Seriatopora hystrix. Mol Ecol Notes 1:157–159. doi:10.1046/j.1471-8278.2001.00058.x CrossRefGoogle Scholar
  153. Mangubhai S, Souter P, Grahn M (2007) Phenotypic variation in the coral Platygyra daedalea in Kenya: morphometry and genetics. Mar Ecol Prog Ser 345:105–115CrossRefGoogle Scholar
  154. Manica A, Carter RW (2000) Morphological and fluorescence analysis of the Montastraea annularis species complex in Florida. Mar Biol 137:899–906CrossRefGoogle Scholar
  155. Marcelino LA, Westneat MW, Stoyneva V et al (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8:e61492. doi:10.1371/journal.pone.0061492 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Márquez LM, van Oppen MJH, Willis BL et al (2002) The highly cross-fertile coral species, Acropora hyacinthus and Acropora cytherea, constitute statistically distinguishable lineages. Mol Ecol 11:1339–1349PubMedCrossRefGoogle Scholar
  157. Márquez LM, Miller DJ, MacKenzie JB, van Oppen MJH (2003) Pseudogenes contribute to the extreme diversity of nuclear ribosomal DNA in the hard coral Acropora. Mol Biol Evol 20:1077–1086. doi:10.1093/molbev/msg122 PubMedCrossRefGoogle Scholar
  158. Marti-Puig P, Forsman ZH, Haverkort-Yeh RD et al (2014) Extreme phenotypic polymorphism in the coral genus Pocillopora; micro-morphology corresponds to mitochondrial groups, while colony morphology does not. Bull Mar Sci 90:211–231. doi:10.5343/bms.2012.1080 CrossRefGoogle Scholar
  159. McCormack JE, Hird SM, Zellmer AJ et al (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538. doi:10.1016/j.ympev.2011.12.007 PubMedCrossRefGoogle Scholar
  160. McMillan J, Miller DJ (1988) Restriction analysis and DNA hybridization applied to the resolution of Acropora nobilis from Acropora formosa. Proc 6th Int Coral Reef Symp 2:775–777Google Scholar
  161. McMillan J, Miller DJ (1989) Nucleotide sequences of highly repetitive DNA from scleractinian corals. Gene 83:185–186. doi:10.1016/0378-1119(89)90418-6 PubMedCrossRefGoogle Scholar
  162. McMillan J, Mahony T, Veron JEN, Miller DJ (1991) Nucleotide sequencing of highly repetitive DNA from seven species in the coral genus Acropora (Cnidaria: Scleractinia) implies a division contrary to morphological criteria. Mar Biol 110:323–327. doi:10.1007/BF01344350 CrossRefGoogle Scholar
  163. Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97PubMedCrossRefGoogle Scholar
  164. Medina M, Collins AG, Takaoka TL et al (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci U S A 103:9096–9100PubMedPubMedCentralCrossRefGoogle Scholar
  165. Miller KJ, Babcock RC (1997) Conflicting morphological and reproductive species boundaries in the coral genus Platygyra. Biol Bull 192:98–110CrossRefGoogle Scholar
  166. Miller KJ, Benzie JAH (1997) No clear genetic distinction between morphological species within the coral genus Platygyra. Bull Mar Sci 61:907–917Google Scholar
  167. Miller KJ, Howard CG (2004) Isolation of microsatellites from two species of scleractinian coral. Mol Ecol Notes 4:11–13. doi:10.1046/j.1471-8286.2003.00555.x CrossRefGoogle Scholar
  168. Milne Edwards H, Haime J (1848a) Recherches sur les polypiers. Deuxième mémoire. Monographie des Turbinolides. Ann Sci Nat, 3e Sér 9:211–344Google Scholar
  169. Milne Edwards H, Haime J (1848b) Recherches sur les polypiers. Premier mémoire. Observations sur la structure et le developpement des polypiers en genéral. Ann Sci Nat, 3e Sér 9:37–89Google Scholar
  170. Milne Edwards H, Haime J (1848c) Recherches sur les polypiers. Quatrième mémoire. Monographie des Astréides. Ann Sci Nat, 3e Sér 10:209–320Google Scholar
  171. Milne Edwards H, Haime J (1848d) Recherches sur les polypiers. Troisième mémoire. Monographie des Eupsammidae. Ann Sci Nat, 3e Sér 10:65–114Google Scholar
  172. Milne Edwards H, Haime J (1848e) Note sur la classification de la deuxième tribu de la famille des Astréides. C R Séances Acad Sci 27:490–497Google Scholar
  173. Milne Edwards H, Haime J (1850) Recherches sur les polypiers. Cinquième mémoire. Monographie des Oculinides. Ann Sci Nat, 3e Sér 13:63–110Google Scholar
  174. Milne Edwards H, Haime J (1851a) Recherches sur les polypiers. Septième mémoire. Monographie des Poritides. Ann Sci Nat, 3e Sér 16:21–70Google Scholar
  175. Milne Edwards H, Haime J (1851b) Recherches sur les polypiers. Sixième mémoire. Monographie des Fongides. Ann Sci Nat, 3e Sér 15:73–144Google Scholar
  176. Milne Edwards H, Haime J (1857) Histoire naturelle des coralliaires, ou polypes proprement dits. Tome second. Zoanthaires sclérodermés (Zoantharia Sclerodermata) ou madréporaires. Roret, ParisCrossRefGoogle Scholar
  177. Odorico DM, Miller DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): patterns of variation consistent with reticulate evolution. Mol Biol Evol 14:465–473PubMedCrossRefGoogle Scholar
  178. Okubo N, Mezaki T, Nozawa Y et al (2013) Comparative embryology of eleven species of stony corals (Scleractinia). PLoS One 8:e84115. doi:10.1371/journal.pone.0084115 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Pallas PS (1766) Elenchus Zoophytorum Sistens Generum Adumbrationes Generaliores et Specierum Cognitarum Succintas Descriptiones, cum Selectis Auctorum Synonymis. Apud Franciscum Varrentrapp, Hagæ ComitumGoogle Scholar
  180. Palumbi SR, Vollmer SV, Romano SL et al (2012) The role of genes in understanding the evolutionary ecology of reef building corals. Evol Ecol 26:317–335. doi:10.1007/s10682-011-9517-3 CrossRefGoogle Scholar
  181. Pandolfi JM (1992) Successive isolation rather than evolutionary centres for the origination of Indo-Pacific reef corals. J Biogeogr 19:593–609. doi:10.2307/2845703 CrossRefGoogle Scholar
  182. Philippe H, Telford MJ (2006) Large-scale sequencing and the new animal phylogeny. Trends Ecol Evol 21:614–620. doi:10.1016/j.tree.2006.08.004 PubMedCrossRefGoogle Scholar
  183. Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol 19:706–712. doi:10.1016/j.cub.2009.02.052 PubMedCrossRefGoogle Scholar
  184. Pinzón JH, LaJeunesse TC (2010) Species delimitation of common reef corals in the genus Pocillopora using nucleotide sequence phylogenies, population genetics and symbiosis ecology. Mol Ecol 20:311–325. doi:10.1111/j.1365-294X.2010.04939.x PubMedCrossRefGoogle Scholar
  185. Pinzón JH, Reyes Bonilla H, Baums IB, LaJeunesse TC (2012) Contrasting clonal structure among Pocillopora (Scleractinia) communities at two environmentally distinct sites in the Gulf of California. Coral Reefs 31:765–777. doi:10.1007/s00338-012-0887-y CrossRefGoogle Scholar
  186. Pinzón JH, Sampayo E, Cox E et al (2013) Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J Biogeogr 40:1595–1608. doi:10.1111/jbi.12110 CrossRefGoogle Scholar
  187. Pochon X, Forsman ZH, Spalding HL et al (2015) Depth specialization in mesophotic corals (Leptoseris spp.) and associated algal symbionts in Hawai’i. R Soc Open Sci 2:140351. doi:10.1073/pnas.0700466104 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601. doi:10.1080/10635150118469 PubMedCrossRefGoogle Scholar
  189. Prada C, DeBiasse MB, Neigel JE et al (2014) Genetic species delineation among branching Caribbean Porites corals. Coral Reefs 33:1019–1030. doi:10.1007/s00338-014-1179-5 CrossRefGoogle Scholar
  190. Regier JC, Shultz JW, Zwick A et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083. doi:10.1038/nature08742 PubMedCrossRefGoogle Scholar
  191. Richards ZT, van Oppen MJH, Wallace CC et al (2008) Some rare Indo-Pacific coral species are probably hybrids. PLoS One 3:e3240. doi:10.1371/journal.pone.0003240 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Richards ZT, Miller DJ, Wallace CC (2013) Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation. Mol Phylogenet Evol 69:837–851. doi:10.1016/j.ympev.2013.06.020 PubMedCrossRefGoogle Scholar
  193. Ridgway T (2005) Allozyme electrophoresis still represents a powerful technique in the management of coral reefs. Biodivers Conserv 14:135–149. doi:10.1007/s10531-005-4054-4 CrossRefGoogle Scholar
  194. Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the western Pacific. Mol Ecol 11:1177–1189PubMedCrossRefGoogle Scholar
  195. Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67:1043–1068Google Scholar
  196. Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642. doi:10.1126/science.271.5249.640 CrossRefGoogle Scholar
  197. Romano SL, Palumbi SR (1997) Molecular evolution of a portion of the mitochondrial 16S ribosomal gene region in scleractinian corals. J Mol Evol 45:397–411. doi:10.1007/PL00006245 PubMedCrossRefGoogle Scholar
  198. Romano SL, Richmond RH (2000) PCR-generated DNA fragment markers for assessing genetic variation within scleractinian coral species. Proc 9th Int Coral Reef Symp 1:125–130Google Scholar
  199. Roniewicz E (1989) Triassic scleractinian corals of the Zlambach Beds, northern Calcareous Alps, Austria. Denk Österr Akad Wiss Math Naturw Klasse 126:1–152Google Scholar
  200. Roniewicz E, Morycowa E (1993) Evolution of the Scleractinia in the light of microstructural data. Cour Forsch Inst Senckenberg 164:233–240Google Scholar
  201. Roniewicz E, Stanley GD Jr (1998) Middle Triassic cnidarians from the New Pass Range, central Nevada. J Paleontol 72:246–256CrossRefGoogle Scholar
  202. Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontol Pol 44:131–166Google Scholar
  203. Roniewicz E, Stolarski J (2001) Triassic roots of the amphiastraeid scleractinian corals. J Paleontol 75:34–45. doi:10.1666/0022-3360(2001)075<0034:TROTAS>2.0.CO;2 CrossRefGoogle Scholar
  204. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  205. Rubin BER, Ree RH, Moreau CS (2012) Inferring phylogenies from RAD sequence data. PLoS One 7:e33394. doi:10.1371/journal.pone.0033394 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Schmidt-Roach S, Lundgren P, Miller KJ et al (2013) Assessing hidden species diversity in the coral Pocillopora damicornis from eastern Australia. Coral Reefs 32:161–172. doi:10.1007/s00338-012-0959-z CrossRefGoogle Scholar
  207. Schmidt-Roach S, Miller KJ, Lundgren P, Andreakis N (2014) With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zool J Linn Soc 170:1–33. doi:10.1111/zoj.12092 CrossRefGoogle Scholar
  208. Schwartz SA, Budd AF, Carlon DB (2012) Molecules and fossils reveal punctuated diversification in Caribbean “faviid” corals. BMC Evol Biol 12:123. doi:10.1186/1471-2148-12-123 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Scrutton CT (1993) A new kilbuchophyllid coral from the Ordovician of the southern uplands, Scotland. Cour Forsch Inst Senckenberg 164:153–158Google Scholar
  210. Scrutton CT, Clarkson ENK (1991) A new scleractinian-like coral from the Ordovician of the southern uplands, Scotland. Palaeontology 34:179–194Google Scholar
  211. Serrano X, Baums IB, O’Reilly K et al (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240. doi:10.1111/mec.12861 PubMedCrossRefGoogle Scholar
  212. Severance EG, Szmant AM, Karl SA (2004a) Microsatellite loci isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 4:74–76CrossRefGoogle Scholar
  213. Severance EG, Szmant AM, Karl SA (2004b) Single-copy gene markers isolated from the Caribbean coral, Montastraea annularis. Mol Ecol Notes 4:167–169CrossRefGoogle Scholar
  214. Shearer TL, Coffroth MA (2004) Isolation of microsatellite loci from the scleractinian corals, Montastraea cavernosa and Porites astreoides. Mol Ecol Notes 4:435–437. doi:10.1111/j.1471-8286.2004.00653.x CrossRefGoogle Scholar
  215. Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487PubMedCrossRefGoogle Scholar
  216. Shinzato C, Shoguchi E, Kawashima T et al (2011) Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320–323. doi:10.1038/nature10249 PubMedCrossRefGoogle Scholar
  217. Smith C, Chen CA, Yang H-P, Miller DJ (1997) A PCR-based method for assaying molecular variation in corals based on RFLP analysis of the ribosomal intergenic spacer region. Mol Ecol 6:683–685. doi:10.1046/j.1365-294X.1997.00226.x CrossRefGoogle Scholar
  218. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446 PubMedCrossRefGoogle Scholar
  219. Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth Sci Rev 60:195–225CrossRefGoogle Scholar
  220. Stefani F, Benzoni F, Pichon M et al (2008a) A multidisciplinary approach to the definition of species boundaries in branching species of the coral genus Psammocora (Cnidaria, Scleractinia). Zool Scr 37:71–91. doi:10.1111/j.1463-6409.2007.00309.x Google Scholar
  221. Stefani F, Benzoni F, Pichon M et al (2008b) Genetic and morphometric evidence for unresolved species boundaries in the coral genus Psammocora (Cnidaria; Scleractinia). Hydrobiologia 596:153–172. doi:10.1007/s10750-007-9092-3 CrossRefGoogle Scholar
  222. Stefani F, Benzoni F, Yang S-Y et al (2011) Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia). Coral Reefs 30:1033–1049. doi:10.1007/s00338-011-0797-4 CrossRefGoogle Scholar
  223. Stobart B, Benzie JAH (1994) Allozyme electrophoresis demonstrates that the scleractinian coral Montipora digitata is two species. Mar Biol 118:183–190. doi:10.1007/BF00349784 CrossRefGoogle Scholar
  224. Stoddart JA (1983) Asexual production of planulae in the coral Pocillopora damicornis. Mar Biol 76:279–284. doi:10.1007/BF00393029 CrossRefGoogle Scholar
  225. Stoddart JA (1984) Genetical structure within populations of the coral Pocillopora damicornis. Mar Biol 81:19–30. doi:10.1007/BF00397621 CrossRefGoogle Scholar
  226. Stolarski J, Roniewicz E (2001) Towards a new synthesis of evolutionary relationships and classification of Scleractinia. J Paleontol 75:1090–1108CrossRefGoogle Scholar
  227. Stolarski J, Kitahara MV, Miller DJ et al (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11:316. doi:10.1186/1471-2148-11-316 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Suzuki G, Fukami H (2012) Evidence of genetic and reproductive isolation between two morphs of subtropical-dominant coral Acropora solitaryensis in the non-reef region of Japan. Zool Sci 29:134–140. doi:10.2108/zsj.29.134 PubMedCrossRefGoogle Scholar
  229. Suzuki G, Nomura K (2013) Species boundaries of Astreopora corals (Scleractinia, Acroporidae) inferred by mitochondrial and nuclear molecular markers. Zool Sci 30:626–632. doi:10.2108/zsj.30.626 PubMedCrossRefGoogle Scholar
  230. Szmant AM, Weil E, Miller MW, Colon DE (1997) Hybridization within the species complex of the scleractinan coral Montastraea annularis. Mar Biol 129:561–572CrossRefGoogle Scholar
  231. Takabayashi M, Carter DA, Loh WKW, Hoegh-Guldberg O (1998a) A coral-specific primer for PCR amplification of the internal transcribed spacer region in ribosomal DNA. Mol Ecol 7:928–930Google Scholar
  232. Takabayashi M, Carter DA, Ward S, Hoegh-Guldberg O (1998b) Inter- and intra-specific variability in ribosomal DNA sequence in the internal transcribed spacer region of corals. In: Proceedings of the Australian Coral Reef Society 75th anniversary conference, Heron Island, Oct 1997. School of Marine Science, University of Queensland, Brisbane, pp 241–248Google Scholar
  233. Takabayashi M, Carter DA, Lopez JV, Hoegh-Guldberg O (2003) Genetic variation of the scleractinian coral Stylophora pistillata, from western Pacific reefs. Coral Reefs 22:17–22Google Scholar
  234. Tay YC, Noreen AME, Suharsono et al (2015) Genetic connectivity of the broadcast spawning reef coral Platygyra sinensis on impacted reefs, and the description of new microsatellite markers. Coral Reefs 34:301–311. doi:10.1007/s00338-014-1206-6 CrossRefGoogle Scholar
  235. Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337. doi:10.1111/j.1469-185X.2008.00045.x PubMedCrossRefGoogle Scholar
  236. Torda G, Lundgren P, Willis BL, van Oppen MJH (2013a) Revisiting the connectivity puzzle of the common coral Pocillopora damicornis. Mol Ecol 22:5805–5820. doi:10.1111/mec.12540 PubMedCrossRefGoogle Scholar
  237. Torda G, Lundgren P, Willis BL, van Oppen MJH (2013b) Genetic assignment of recruits reveals short and long distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef. Mol Ecol 22:5821–5834. doi:10.1111/mec.12539 PubMedCrossRefGoogle Scholar
  238. Torda G, Schmidt-Roach S, Peplow LM et al (2013c) A rapid genetic assay for the identification of the most common Pocillopora damicornis genetic lineages on the Great Barrier Reef. PLoS One 8:e58447. doi:10.1371/journal.pone.0058447 PubMedPubMedCentralCrossRefGoogle Scholar
  239. Tsang LM, Chu KH, Nozawa Y, Chan BKK (2014) Morphological and host specificity evolution in coral symbiont barnacles (Balanomorpha: Pyrgomatidae) inferred from a multi-locus phylogeny. Mol Phylogenet Evol 77:11–22. doi:10.1016/j.ympev.2014.03.002 PubMedCrossRefGoogle Scholar
  240. Tseng C-C, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and Anacropora matthai (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24:502–508. doi:10.1007/s00338-005-0499-x CrossRefGoogle Scholar
  241. van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc R Soc Lond B Biol Sci 266:179–183CrossRefGoogle Scholar
  242. van Oppen MJH, Willis BL, van Vugt HWJA, Miller DJ (2000) Examination of species boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Mol Ecol 9:1363–1373PubMedCrossRefGoogle Scholar
  243. van Oppen MJH, McDonald BJ, Willis BL, Miller DJ (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315–1329PubMedCrossRefGoogle Scholar
  244. van Oppen MJH, Willis BL, Van Rheede T, Miller DJ (2002) Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals. Mol Ecol 11:1363–1376PubMedCrossRefGoogle Scholar
  245. van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18. doi:10.1007/s00227-003-1188-3 CrossRefGoogle Scholar
  246. van Veghel MLJ (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. I. Gametogenesis and spawning behavior. Mar Ecol Prog Ser 109:209–219CrossRefGoogle Scholar
  247. van Veghel MLJ, Bak RPM (1993) Intraspecific variation of a dominant Caribbean reef building coral, Montastrea annularis: genetic, behavioral, and morphometric aspects. Mar Ecol Prog Ser 92:255–265CrossRefGoogle Scholar
  248. van Veghel MLJ, Bak RPM (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. III. Reproduction in damaged and regenerating colonies. Mar Ecol Prog Ser 109:229–233CrossRefGoogle Scholar
  249. van Veghel MLJ, Bosscher H (1995) Variation in linear growth and skeletal density within the polymorphic reef building coral Montastrea annularis. Bull Mar Sci 56:902–908Google Scholar
  250. van Veghel MLJ, Kahmann MEH (1994) Reproductive characteristics of the polymorphic Caribbean reef building coral Montastrea annularis. II. Fecundity and colony structure. Mar Ecol Prog Ser 109:221–227CrossRefGoogle Scholar
  251. van Veghel MLJ, Cleary DFR, Bak RPM (1996) Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 58:792–803Google Scholar
  252. Vaughan TW, Wells JW (1943) Revision of the suborders, families, and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–345Google Scholar
  253. Veron JEN (1986) Corals of Australia and the Indo-Pacific. Angus and Robertson, SydneyGoogle Scholar
  254. Veron JEN (1995) Corals in space and time. UNSW Press, SydneyGoogle Scholar
  255. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  256. Veron JEN (2013) Overview of the taxonomy of zooxanthellate Scleractinia. Zool J Linn Soc 169:485–508. doi:10.1111/zoj.12076 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Veron JEN, Wallace CC (1984) Scleractinia of eastern Australia. Part V. Family Acroporidae. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  258. Veron JEN, Odorico DM, Chen CA, Miller DJ (1996) Reassessing evolutionary relationships of scleractinian corals. Coral Reefs 15:1–9. doi:10.1007/BF01626073 CrossRefGoogle Scholar
  259. Vollmer SV, Palumbi SR (2002) Hybridization and the evolution of reef coral diversity. Science 296:2023–2025PubMedCrossRefGoogle Scholar
  260. Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13:2763–2772PubMedCrossRefGoogle Scholar
  261. Wallace CC (1999) Staghorn corals of the world: a revision of the coral genus Acropora. CSIRO Publishing, CollingwoodGoogle Scholar
  262. Wallace CC (2012) Acroporidae of the Caribbean. Geol Belg 15:388–393Google Scholar
  263. Wallace CC, Chen CA, Fukami H, Muir PR (2007) Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs 26:231–239. doi:10.1007/s00338-007-0203-4 CrossRefGoogle Scholar
  264. Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Mem Queensland Mus 57:1–255Google Scholar
  265. Wang W, Omori M, Hayashibara T et al (1995) Isolation and characterization of a mini-collagen gene encoding a nematocyst capsule protein from a reef-building coral, Acropora donei. Gene 152:195–200. doi:10.1016/0378-1119(95)00644-L PubMedCrossRefGoogle Scholar
  266. Wei NV, Wallace CC, Dai C-F et al (2006) Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool Stud 45:404–418Google Scholar
  267. Wei NV, Hsieh HJ, Dai C-F et al (2012) Reproductive isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool Stud 51:85–92Google Scholar
  268. Weil E, Knowlton N (1994) A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis and Solander, 1786) and its two sibling species, M. faveolata (Ellis and Solander, 1786) and M. franksi (Gregory, 1895). Bull Mar Sci 55:151–175Google Scholar
  269. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F: Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, pp F328–F444Google Scholar
  270. Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans R Soc Lond B Biol Sci 359:571–583PubMedPubMedCentralCrossRefGoogle Scholar
  271. White TJ, Bruns T, Lee S, Taylor WJ (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  272. Willis BL, Ayre DJ (1985) Asexual reproduction and genetic determination of growth form in the coral Pavona cactus: biochemical genetic and immunogenic evidence. Oecologia 65:516–525. doi:10.1007/BF00379666 CrossRefGoogle Scholar
  273. Willis BL, Babcock RC, Harrison PL, Wallace CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53–S65CrossRefGoogle Scholar
  274. Willis BL, van Oppen MJH, Miller DJ et al (2006) The role of hybridization in the evolution of reef corals. Annu Rev Ecol Evol Syst 37:489–517. doi:10.1146/annurev.ecolsys.37.091305.110136 CrossRefGoogle Scholar
  275. Wolstenholme JK (2004) Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar Biol 144:567–582CrossRefGoogle Scholar
  276. Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22:155–166. doi:10.1007/s00338-003-0299-0 CrossRefGoogle Scholar
  277. Wood E (1983) Reef corals of the world: biology and field guide. TFH Publications, Hong KongGoogle Scholar
  278. Work TM, Aeby GS (2014) Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar Ecol Prog Ser 500:1–9. doi:10.3354/meps10698 CrossRefGoogle Scholar
  279. Zilberberg C, Peluso L, Marques JA, Cunha H (2014) Polymorphic microsatellite loci for endemic Mussismilia corals (Anthozoa: Scleractinia) of the southwest Atlantic Ocean. J Hered 105:572–575. doi:10.1093/jhered/esu023 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marcelo V. Kitahara
    • 1
    • 2
  • Hironobu Fukami
    • 3
  • Francesca Benzoni
    • 4
    • 5
  • Danwei Huang
    • 6
  1. 1.Departamento de Ciências do MarUniversidade Federal de São PauloSantosBrazil
  2. 2.Centro de Biologia MarinhaUniversidade de São PauloPraia do Cabelo GordoBrazil
  3. 3.Department of Marine Biology and Environmental Science, Faculty of AgricultureUniversity of MiyazakiMiyazakiJapan
  4. 4.Department of Biotechnology and BiosciencesUniversity of Milano-BicoccaMilanItaly
  5. 5.UMR ENTROPIE (IRD, Université de La Réunion, CNRS)Laboratoire d’excellence-CORAIL, Centre IRD de NouméaFranceNew Caledonia
  6. 6.Department of Biological Sciences and Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore

Personalised recommendations