Advertisement

Population Dynamics of Temperate Corals in a Changing Climate

  • Erik Caroselli
  • Stefano Goffredo
Chapter

Abstract

In contrast with the number of studies on tropical species, analyses of the variation of growth parameters with environmental variables in temperate areas are very scarce. Notwithstanding the importance of obtaining information on coral population dynamics, few studies have quantified demographic parameters of scleractinian corals, partly because of the processes of fragmentation, fusion and partial colony mortality, which cause corals of similar size to be of widely different ages, thus distorting the age-size relationships. Available literature on growth and population dynamics of natural populations of temperate scleractinians is reviewed in the present work. As general trends, it seems that: (1) solitary species have a definite growth pattern, in contrast with colonial species; (2) symbiotic species are more sensitive to increasing temperatures and more vulnerable to global warming; (3) non-symbiotic species are more tolerant to increasing temperature, but may be negatively affected by the indirect effects of increasing solar radiation; and (4) even if the energy resulting from photosynthesis may increase as a consequence of ocean acidification, the growth and abundance of symbiotic corals seem to be negatively affected by acidification and the negative response of non-symbiotic corals is expected to be even stronger.

Keywords

Astrangia Azooxanthellate Balanophyllia Caryophyllia Cladocora Definite growth Demography Field studies Global warming Growth Leptopsammia Natural populations Ocean acidification Oculina pH Temperate corals Temperate scleractinians Temperature Zooxanthellate 

Notes

Acknowledgments

This review was written during the implementation of the EU project “CoralWarm–Corals and global warming: the Mediterranean versus the Red Sea”, funded by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no [249930; www.CoralWarm.eu]

References

  1. Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354CrossRefGoogle Scholar
  2. Al-Horani FA, Ferdelman T, Al-Moghrabi SM, de Beer D (2005) Spatial distribution of calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. Coral Reefs 24:173–180CrossRefGoogle Scholar
  3. Anderson KD, Pratchett MS (2014) Variation in size-frequency distributions of branching corals between a tropical versus sub-tropical reef. Mar Ecol Prog Ser 502:117–128CrossRefGoogle Scholar
  4. Babcock RC (1991) Comparative demography of three species of scleractinian corals using age- and size-dependent classifications. Ecol Monogr 6:225–244CrossRefGoogle Scholar
  5. Bablet JP (1985) Report on the growth of a scleractinian. Proc 5th international coral reef symposium 4, pp 361–365Google Scholar
  6. Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141CrossRefGoogle Scholar
  7. Bak RPM, Meesters EH (1998) Coral population structure: the hidden information of colony size-frequency distributions. Mar Ecol Prog Ser 162:301–306CrossRefGoogle Scholar
  8. Barnes DJ, Lough JM (1989) The nature of skeletal density banding in scleractinian corals: fine banding and seasonal patterns. J Exp Mar Biol Ecol 2:119–134CrossRefGoogle Scholar
  9. Bauman AG, Pratchett MS, Baird AH, Riegl B, Heron SF, Feary DA (2013) Variation in the size structure of corals is related to environmental extremes in the Persian Gulf. Mar Environ Res 84:43–50PubMedCrossRefGoogle Scholar
  10. Bosscher H (1993) Computerized tomography and skeletal density of coral skeletons. Coral Reefs 12:97–103CrossRefGoogle Scholar
  11. Bramanti L, Iannelli M, Fan TY, Edmunds PJ (2015) Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs 34:505–515CrossRefGoogle Scholar
  12. Browne NK (2012) Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances. Mar Environ Res 77:71–83PubMedCrossRefGoogle Scholar
  13. Bucher DJ, Harriott VJ, Roberts LG (1998) Skeletal micro-density, porosity and bulk density of acroporid corals. J Exp Mar Biol Ecol 228:117–136CrossRefGoogle Scholar
  14. Buddemeier RW, Kinzie RA III (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225Google Scholar
  15. Cantin NE, Lough JM (2014) Surviving coral bleaching events: Porites growth anomalies on the Great Barrier Reef. PLoS One 9:e88720PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the Central Red Sea. Science 329:322–325PubMedCrossRefGoogle Scholar
  17. Carlon DB (2002) Production and supply of larvae as determinants of zonation in a brooding tropical coral. J Exp Mar Biol Ecol 268:33–46CrossRefGoogle Scholar
  18. Caroselli E, Prada F, Pasquini L, Nonnis Marzano F, Zaccanti F, Falini G, Levy O, Dubinsky Z, Goffredo S (2011) Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114:255–264PubMedCrossRefGoogle Scholar
  19. Caroselli E, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2012a) Inferred calcification rate of a Mediterranean azooxanthellate coral is uncoupled with sea surface temperature along an 8° latitudinal gradient. Front Zool 9:32PubMedPubMedCentralCrossRefGoogle Scholar
  20. Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z, Goffredo S (2012b) Growth and demography of the solitary scleractinian coral Leptopsammia pruvoti along a sea surface temperature gradient in the Mediterranean Sea. PLoS One 7:e37848PubMedPubMedCentralCrossRefGoogle Scholar
  21. Caroselli E, Nanni V, Levy O, Falini G, Dubinsky Z, Goffredo S (2015a) Latitudinal variations in biometry and population density of a Mediterranean solitary coral. Limnol Oceanogr 60:1356–1370CrossRefGoogle Scholar
  22. Caroselli E, Falini G, Goffredo S, Dubinsky Z, Levy O (2015b) Negative response of photosynthesis to natural and projected high seawater temperatures estimated by pulse amplitude modulation fluorometry in a temperate coral. Front Physiol 6:317Google Scholar
  23. Caroselli E, Ricci F, Brambilla V, Mattioli G, Levy O, Falini G, Dubinsky Z, Goffredo S (2016a) Relationships between growth, population dynamics, and environmental parameters in the solitary non-zooxanthellate scleractinian coral Caryophyllia inornata along a latitudinal gradient in the Mediterranean Sea. Coral Reefs 35:507–519Google Scholar
  24. Caroselli E, Brambilla V, Ricci F, Mattioli G, Levy O, Falini, Dubinsky Z, Goffredo S (2016b) Inferred calcification rate of a temperate non-zooxanthellate caryophylliid coral along a wide latitudinal gradient. Coral Reefs doi: 10.1007/s00338-016-1422-3Google Scholar
  25. Carricart-Ganivet JP (2004) Sea surface temperature and the growth of the West Atlantic reef-building coral Montastraea annularis. J Exp Mar Biol Ecol 302:249–260CrossRefGoogle Scholar
  26. Carricart-Ganivet JP, Vasquez-Bedoya LF, Cabanillas-Teran N, Blanchon P (2013) Gender-related differences in the apparent timing of skeletal density bands in the reef-building coral Siderastrea siderea. Coral Reefs 32:769–777CrossRefGoogle Scholar
  27. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-Western Mediterranean), summer 1999. Ecol Lett 3:284–293CrossRefGoogle Scholar
  28. Chadwick-Furman NE, Goffredo S, Loya Y (2000) Growth and population dynamic model of the reef coral Fungia granulosa Kluzinger, 1879 at Eilat, northern Red Sea. J Exp Mar Biol Ecol 249:199–218PubMedCrossRefGoogle Scholar
  29. Connell JH (1973) Population ecology of reef building corals. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, vol II, Biology 1. Academic, New YorkGoogle Scholar
  30. Cooper TF, De’ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob Chang Biol 14:529–538CrossRefGoogle Scholar
  31. Crook ED, Cohen AL, Rebolledo-Vieyrac M, Hernandez L, Paytan A (2013) Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc Natl Acad Sci U S A 110:11044–11049PubMedPubMedCentralCrossRefGoogle Scholar
  32. D’Ortenzio F, Ribera d’Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–148CrossRefGoogle Scholar
  33. Dimond J, Carrington E (2007) Temporal variability in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar Ecol Prog Ser 348:161–172CrossRefGoogle Scholar
  34. Dodge RE, Brass GW (1984) Skeletal extension, density and calcification of the reef coral, Montastraea annularis: St. Croix, U.S. Virgin Islands. Bull Mar Sci 34:288–307Google Scholar
  35. Edmunds PJ (2010) Population biology of Porites astreoides and Diploria strigosa on a shallow Caribbean reef. Mar Ecol Prog Ser 418:87–104CrossRefGoogle Scholar
  36. Edmunds PJ (2015) A quarter-century demographic analysis of the Caribbean coral, Orbicella annularis, and projections of population size over the next century. Limnol Oceanogr 60:840–855CrossRefGoogle Scholar
  37. Elizalde-Rendon EM, Horta-Puga G, Gonzalez-Diaz P, Carricart-Ganivet JP (2010) Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic. Coral Reefs 29:607–614CrossRefGoogle Scholar
  38. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169CrossRefGoogle Scholar
  39. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  40. Fadlallah YH (1983) Population dynamics and life history of a solitary coral, Balanophyllia elegans, from Central California. Oecologia 58:200–207CrossRefGoogle Scholar
  41. Fantazzini P, Mengoli S, Evangelisti S, Pasquini L, Mariani M, Brizi L, Goffredo S, Caroselli E, Prada F, Falini G, Levy O, Dubinsky Z (2013) A time-domain nuclear magnetic resonance study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes. Environ Sci Technol 47:12679–12686PubMedCrossRefGoogle Scholar
  42. Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, Di Giosia M, Fermani S, Capaccioni B, Caroselli E, Prada F, Zaccanti F, Levy O, Dubinsky Z, Kaandorp JA, Konglerd P, Hammel JU, Dauphin Y, Cuif J-P, Weaver JC, Fabricius KE, Wagermaier W, Fratzl P, Falini G, Goffredo S (2015) Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun 6:7785PubMedPubMedCentralCrossRefGoogle Scholar
  43. Foster KA, Foster G (2013) Demography and population dynamics of massive coral communities in adjacent high latitude regions (United Arab Emirates). PLoS One 8:e71049PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y-Y, Chen C, Dai C-F, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3:e3222PubMedPubMedCentralCrossRefGoogle Scholar
  45. Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272CrossRefGoogle Scholar
  46. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonne P, Cigliano M, Diaz D, Harmelin JG, Gambi MC, Kersting DK, Ledoux JB, Lejeusne C, Linares C, Marschal C, Perez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C (2009) Mass mortality in the NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103CrossRefGoogle Scholar
  47. Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183CrossRefGoogle Scholar
  48. Gerrodette T (1979) Ecological studies of two temperate solitary corals. PhD thesis. Scripps Institution of Oceanography, University of California, San DiegoGoogle Scholar
  49. Glassom D, Chadwick NE (2006) Recruitment, growth and mortality of juvenile corals at Eilat, northern Red Sea. Mar Biol 142:411–418Google Scholar
  50. Goffredo S, Chadwick-Furman NE (2003) Comparative demography of mushroom corals (Scleractinia, Fungiidae) at Eilat, northern Red Sea. Mar Biol 142:411–418Google Scholar
  51. Goffredo S, Lasker HR (2006) Modular growth of a gorgonian coral generates predictable patterns of colony and population growth. J Exp Mar Biol Ecol 336:221–229CrossRefGoogle Scholar
  52. Goffredo S, Lasker HR (2008) An adaptive management approach to an octocoral fishery based on the Beverton-Holt model. Coral Reefs 27:751–761CrossRefGoogle Scholar
  53. Goffredo S, Zaccanti F (2004) Laboratory observations of larval behavior and metamorphosis in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Bull Mar Sci 74:449–458Google Scholar
  54. Goffredo S, Mattioli G, Zaccanti F (2004) Growth and population dynamics model of the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 23:433–443CrossRefGoogle Scholar
  55. Goffredo S, Radetić J, Airi V, Zaccanti F (2005) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis. Mar Biol 147:485–495CrossRefGoogle Scholar
  56. Goffredo S, Airi V, Radetić J, Zaccanti F (2006) Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae) in the Mediterranean. 2. Quantitative aspects of the annual reproductive cycle. Mar Biol 148:923–932CrossRefGoogle Scholar
  57. Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F (2007) Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Mar Biol 152:351–361CrossRefGoogle Scholar
  58. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Zaccanti F (2008) Relationships between growth, population structure and sea surface temperature in the temperate solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Coral Reefs 27:623–632CrossRefGoogle Scholar
  59. Goffredo S, Caroselli E, Mattioli G, Pignotti E, Dubinsky Z, Zaccanti F (2009) Inferred level of calcification decreases along an increasing temperature gradient in a Mediterranean endemic coral. Limnol Oceanogr 54:930–937CrossRefGoogle Scholar
  60. Goffredo S, Caroselli E, Mattioli G, Zaccanti F (2010) Growth and population dynamic model for the non-zooxanthellate temperate solitary coral Leptopsammia pruvoti (Scleractinia, Dendrophylliidae). Mar Biol 157:2603–2612CrossRefGoogle Scholar
  61. Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, Fantazzini P, Fermani S, Reggi M, Levy O, Fabricius KE, Dubinsky Z, Falini G (2014) Biomineralization control related to population density under ocean acidification. Nat Clim Chang 4:593–597PubMedPubMedCentralCrossRefGoogle Scholar
  62. Goffredo S, Mancuso A, Caroselli E, Prada F, Dubinsky Z, Falini G, Levy O, Fantazzini P, Pasquini L (2015) Skeletal mechanical properties of Mediterranean corals along a wide latitudinal gradient. Coral Reefs 34:121–132CrossRefGoogle Scholar
  63. Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10CrossRefGoogle Scholar
  64. Grigg RW (1974) Growth rings: annual periodicity in two gorgonian corals. Ecology 55:876–881CrossRefGoogle Scholar
  65. Grigg RW (1975) Age structure of a longevous coral: a relative index of habitat suitability and stability. Am Nat 109:647–657CrossRefGoogle Scholar
  66. Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150CrossRefGoogle Scholar
  67. Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  68. Helmle KP, Dodge RE, Swart PK, Gledhill DK, Eakin CM (2011) Growth rates of Florida corals from 1937 to 1996 and their response to climate change. Nat Commun 2:215PubMedCrossRefGoogle Scholar
  69. Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125CrossRefGoogle Scholar
  70. Hoegh-Guldberg O (2011) The impact of climate change on coral reef ecosystems. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, DordrechtGoogle Scholar
  71. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81CrossRefGoogle Scholar
  72. Hughes RN (1989) A functional biology of clonal animals. Chapman and Hall, New YorkGoogle Scholar
  73. Hughes TP, Jackson JBC (1980) Do corals lie about their age-some demographic consequences of partial mortality, fission and fusion. Science 209:713–715PubMedCrossRefGoogle Scholar
  74. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166CrossRefGoogle Scholar
  75. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Nature 301:929–933Google Scholar
  76. Jiménez C, Hadjioannou L, Petrou A, Nikolaidis A, Evriviadou M, Lange MA (2014) Mortality of the scleractinian coral Cladocora caespitosa during a warming event in the Levantine Sea (Cyprus). Reg Environ Chang. doi: 10.1007/s10113-014-0729-2 Google Scholar
  77. Johnson KG (1992) Population dynamics of a free-living coral: recruitment, growth and survivorship of Manicina areolata (Linnaeus) on the Caribbean coast of Panama. J Exp Mar Biol Ecol 164:171–191CrossRefGoogle Scholar
  78. Johnson KG, Budd AF, Stemann TA (1995) Extinction selectivity of neogene Caribbean reef corals. Paleobiology 21:52–73CrossRefGoogle Scholar
  79. Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215CrossRefGoogle Scholar
  80. Kenter JAM (1989) Applications of computerized tomography in sedimentology. Mar Geotechnol 8:201–211CrossRefGoogle Scholar
  81. Kersting D-K, Linares C (2012) Cladocora caespitosa bioconstructions in the Columbretes Islands Marine Reserve (Spain, NW Mediterranean): distribution, size structure and growth. Mar Ecol 33:427–436CrossRefGoogle Scholar
  82. Kersting D-K, Teixido N, Linares C (2014) Recruitment and mortality of the temperate coral Cladocora caespitosa: implications for the recovery of endangered populations. Coral Reefs 33:403–407CrossRefGoogle Scholar
  83. Kinsey DW, Davies PJ (1979) Carbon turnover, calcification and growth in coral reefs. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral forming elements. Elsevier, AmsterdamGoogle Scholar
  84. Kleypas JA, McManus JW, Menez AB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  85. Knittweis L, Jompa J, Richter C, Wolff M (2009) Population dynamics of the mushroom coral Heliofungia actiniformis in the Spermonde Archipelago, South Sulawesi, Indonesia. Coral Reefs 28:793–804CrossRefGoogle Scholar
  86. Knuston DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177:270–272CrossRefGoogle Scholar
  87. Kružić P, Popijač A (2015) Mass mortality events of the coral Balanophyllia europaea (Scleractinia, Dendrophylliidae) in the Mljet National Park (eastern Adriatic Sea) caused by sea temperature anomalies. Coral Reefs 34:109–118CrossRefGoogle Scholar
  88. Kružić P, Požar-Domac A (2002) Skeleton growth rates of coral bank of Cladocora caespitosa (Anthozoa, Scleractinia) in Veliko jezero (Mljet National Park). Period Biol 104:123–129Google Scholar
  89. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536CrossRefGoogle Scholar
  90. Kružić P, Sršen P, Benković L (2012) The impact of seawater temperature on coral growth parameters of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the eastern Adriatic Sea. Facies 58:477–491CrossRefGoogle Scholar
  91. Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396CrossRefGoogle Scholar
  92. Lins de Barros MM, Pires DO (2006) Colony size-frequency distributions among different populations of the scleractinian coral Siderastrea stellata in Southwestern Atlantic: implications for life history patterns. Braz J Oceanogr 54:213–223Google Scholar
  93. Logan A, Anderson IH (1991) Skeletal extension growth rate assessment in corals, using CT scan imagery. Bull Mar Sci 49:847–850Google Scholar
  94. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral Porites. J Exp Mar Biol Ecol 245:225–243PubMedCrossRefGoogle Scholar
  95. Loya Y (1976) The red sea coral Stylophora pistillata is an r strategist. Nature 259:478–480CrossRefGoogle Scholar
  96. Manzello DP (2010) Coral growth with thermal stress and ocean acidification: lessons from the eastern tropical Pacific. Coral Reefs 29:749–758CrossRefGoogle Scholar
  97. Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015) Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: an inshore-offshore comparison. Mar Ecol Prog Ser 521:81–89CrossRefGoogle Scholar
  98. Meesters WH, Hilterman M, Kardinaal E, Keetman M, de Vries M, Bak RPM (2001) Colony size–frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209:43–54CrossRefGoogle Scholar
  99. Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Prog Ser 122:217–225CrossRefGoogle Scholar
  100. Morgan KM, Kench PS (2012) Skeletal extension and calcification of reef-building corals in the central Indian Ocean. Mar Environ Res 81:78–82PubMedCrossRefGoogle Scholar
  101. Muko S, Arakaki S, Tamai R, Sakai K (2014) An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix. Ecol Model 277:68–76CrossRefGoogle Scholar
  102. Nozawa Y, Tokeshi M, Nojima S (2008) Structure and dynamics of a high-latitude scleractinian coral community in Amakusa, southwestern Japan. Mar Ecol Prog Ser 358:151–160CrossRefGoogle Scholar
  103. Pauly D (1984) Fish population dynamics in tropical waters: a manual for use with programmable calculators. International Center for Living Aquatic Resources Management, ManilaGoogle Scholar
  104. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201CrossRefGoogle Scholar
  105. Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80CrossRefGoogle Scholar
  106. Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Chang 40:195–200CrossRefGoogle Scholar
  107. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  108. Peirano A, Kružić P, Mastronuzzi G (2009) Growth of Mediterranean reef of Cladocora caespitosa (L.) in the late quaternary and climate inferences. Facies 55:325–333CrossRefGoogle Scholar
  109. Richardson AJ, Poloczanska ES (2008) Under-resourced, under threat. Science 320:1294–1295PubMedCrossRefGoogle Scholar
  110. Rinkevich B (1989) The contribution of photosynthetic products to coral reproduction. Mar Biol 101:259–263CrossRefGoogle Scholar
  111. Rinkevich B (1995) Restoration strategies for coral reefs damaged by recreational activities—the use of sexual and asexual recruits. Restor Ecol 3:241–251CrossRefGoogle Scholar
  112. Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19:24CrossRefGoogle Scholar
  113. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pages C (2006) Growth and photosynthesis of two Mediterranean corals, Cladocora caespitosa and Oculina patagonica, under normal and elevated temperatures. J Exp Biol 209:4546–4556PubMedCrossRefGoogle Scholar
  114. Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of Mediterranean corals to ocean acidification. Biogeosci Discuss 6:7103–7131CrossRefGoogle Scholar
  115. Ross MA (1984) A quantitative study of the stony coral fishery in Cebu, Philippines. PSZNI Mar Ecol 5:75–91CrossRefGoogle Scholar
  116. Roth L, Koksal S, van Woesik R (2010) Effects of thermal stress on key processes driving coral-population dynamics. Mar Ecol Prog Ser 411:73–87CrossRefGoogle Scholar
  117. Ruppert EE, Fox RS (1988) Seashore animals of the Southeast. University of South Carolina Press, ColumbiaGoogle Scholar
  118. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullisster JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371PubMedCrossRefGoogle Scholar
  119. Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the bay of Piran (Adriatic Sea): I. Distribution and biometry. PSZNI Mar Ecol 14:205–219CrossRefGoogle Scholar
  120. Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (Faviidae, Montastreinae) in the bay of Piran: II. Energy budget. PSZNI Mar Ecol 14:221–238CrossRefGoogle Scholar
  121. Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188CrossRefGoogle Scholar
  122. Shi Q, Yu KF, Chen TR, Zhang HL, Zhao MX, Yan HQ (2012) Two centuries-long records of skeletal calcification in massive Porites colonies from Meiji Reef in the southern South China Sea and its responses to atmospheric CO2 and seawater temperature. Sci China Earth Sci 55:1–12CrossRefGoogle Scholar
  123. Shuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9CrossRefGoogle Scholar
  124. Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic and elemental records in a non-tropical coral (Cladocora caespitosa): discovery of a new high-resolution climate archive for the Mediterranean Sea. Glob Planet Chang 49:94–120CrossRefGoogle Scholar
  125. Sparre P, Ursin E, Venema SC (1989) Introduction to tropical fish stock assessment. FAO Fisheries Technical Paper, RomeGoogle Scholar
  126. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  127. Tanzil JTI, Brown BE, Tudhope AW, Dunne RP (2009) Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28:519–528CrossRefGoogle Scholar
  128. Tanzil JTI, Brown BE, Dunne RP, Lee JN, Kaandorp JA, Todd PA (2013) Regional decline in growth rates of massive Porites corals in Southeast Asia. Global Chang Biol 19:3011–3023CrossRefGoogle Scholar
  129. Teixido N, Garrabou J, Harmelin JG (2011) Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PLoS One 6:e23744PubMedPubMedCentralCrossRefGoogle Scholar
  130. Thresher RE, Adkins J, Thiagarajan N (2011) Modal analysis of the deep-water solitary scleractinian, Desmophyllum dianthus, on SW Pacific seamounts: inferred recruitment periodicity, growth and mortality rates. Coral Reefs 30:1063–1070CrossRefGoogle Scholar
  131. Vardi T, Williams DE, Sandin SA (2012) Population dynamics of threatened elkhorn coral in the northern Florida Keys, USA. Endanger Species Res 19:157–169CrossRefGoogle Scholar
  132. Vermeij MJA (2006) Early life-history dynamics of Caribbean coral species on artificial substratum: the importance of competition, growth and variation in life-history strategy. Coral Reefs 25:59–71CrossRefGoogle Scholar
  133. Vermeij MJA, Sandin SA (2009) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004CrossRefGoogle Scholar
  134. Von Bertalanffy L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Hum Biol 10:181–213Google Scholar
  135. Zhao MX, Yu KF, Zhang QM, Shi Q, Roff G (2014) Age structure of massive Porites lutea corals at Luhuitou fringing reef (northern South China Sea) indicates recovery following severe anthropogenic disturbance. Coral Reefs 33:39–44CrossRefGoogle Scholar
  136. Zibrowius H (1980) Les scléractiniaires de la Méditeranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar
  137. Zibrowius H (1982) Taxonomy in ahermatypic scleractinian corals. Palaeontogr Am 54:80–85Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly

Personalised recommendations