Long Term Analysis of the Localization Model Based on Wi-Fi Network

  • Rafał Górak
  • Marcin LucknerEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 642)


The paper presents the analysis of long term accuracy of the localization solution based on Wi-Fi signals. The localization model is built using random forest algorithm and it was tested using data collected between years 2012–2014 inside of a six floor building.


Building Floor Random Forest Fingerprint Collection Mean Horizontal Error Growing Regression Trees 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Enge, P., Misra, P.: Special issue on global positioning system. Proc. IEEE 87(1), 3–15 (1999)Google Scholar
  3. 3.
    Gallagher, T., Tan, Y.K., Li, B., Dempster, A.G.: Trials of commercial Wi-Fi positioning systems for indoor and urban canyons. In: IGNSS Symposium on GPS/GNSS, Gold Coast, Australia (2009)Google Scholar
  4. 4.
    Garcia-Valverde, T., Garcia-Sola, A., Gomez-Skarmeta, A., Botia, J., Hagras, H., Dooley, J., Callaghan, V.: An adaptive learning fuzzy logic system for indoor local-isation using wi-fi in ambient intelligent environments. In: 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2012)Google Scholar
  5. 5.
    Górak, R., Luckner, M.: Malfunction immune wi-fi localisation method. In: Nez, M., Nguyen, N., Camacho, D., Trawiski, B. (eds.) Computational Collective Intelligence, Lecture Notes in Computer Science, vol. 9329, pp. 328–337. Springer International Publishing (2015).
  6. 6.
    Grzenda, M.: On the prediction of floor identification credibility in RSS-based positioning techniques. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds.) 26th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2013 Recent Trends in Applied Artificial Intelligence, Amsterdam, The Netherlands, June 17–21, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7906, pp. 610–619. Springer (2013).
  7. 7.
    Karwowski, J., Okulewicz, M., Legierski, J.: Application of particle swarm optimization algorithm to neural network training process in the localization of the mobile terminal. In: Iliadis, L.S., Papadopoulos, H., Jayne, C. (eds.) Engineering Applications of Neural Networks—14th International Conference, EANN 2013, Halkidiki, Greece, September 13–16, 2013 Proceedings, Part I. Communications in Computer and Information Science, vol. 383, pp. 122–131. Springer (2013).
  8. 8.
    Korbel, P., Wawrzyniak, P., Grabowski, S., Krasinska, D.: Locfusion API—programming interface for accurate multi-source mobile terminal positioning. In: 2013 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 819–823 (2013)Google Scholar
  9. 9.
    Papapostolou, A., Chaouchi, H.: Scene analysis indoor positioning enhancements. Ann. Télécommun. 66, 519–533 (2011)CrossRefGoogle Scholar
  10. 10.
    Roos, T., Myllymaki, P., Tirri, H., Misikangas, P., Sievanen, J.: A probabilistic approach to WLAN user location estimation. Int. J. Wireless Inf. Networks 9(3), 155–164 (2002)CrossRefGoogle Scholar
  11. 11.
    Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.G.: A wireless LAN-based indoor positioning technology. IBM J. Res. Dev. 48(5–6), 617–626 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarszawaPoland

Personalised recommendations