Advertisement

How to Manipulate the Microbiota: Prebiotics

  • Petra LouisEmail author
  • Harry J. Flint
  • Catherine Michel
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 902)

Abstract

During the last century, human nutrition has evolved from the definition of our nutritional needs and the identification of ways to meet them, to the identification of food components that can optimise our physiological and psychological functions. This development, which aims to ensure the welfare, health and reduced susceptibility to disease during life, gave birth to the concept of “functional foods”. In this context, there is an increasing interest in the physiological effects induced by the dense and diverse microbiota which inhabits the human colon and whose development depends on the fermentation of undigested food residues. Thus, much research aims at identifying ways to guide these impacts in order to benefit the health of the host. It is in this context that the concept of “prebiotics” was developed in the 1990s. Since then, prebiotics have stimulated extensive work in order to clarify their definition, their nature and their physiological properties in accordance with the evolution of knowledge on the intestinal microbiota. However many questions remain open about their specificities, their mechanism(s) of action and therefore the relevance of their current categorisation.

Keywords

Resistant starch Oligosaccharides Fermentation Health effect Non-digestible carbohydrates Dietary fibre Microbiota composition Competition for substrates Short-chain fatty acids Mineral absorption Appetite regulation Intestinal barrier Immune functions 

References

  1. [No authors listed] (2005) Br J Nutr 93(Suppl 1):S1–168Google Scholar
  2. [No authors listed] (2007) Inulin and oligofructose: proven health benefits and claims. Proceedings of the 5th ORAFTI Research Conference, 28–29 Sept 2006, Boston, MA. J Nutr 137(11 Suppl):2489S–2597SGoogle Scholar
  3. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ (2005) A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 82:471–476PubMedGoogle Scholar
  4. Alliet P, Scholtens P, Raes M, Hensen K, Jongen H, Rummens JL, Boehm G, Vandenplas Y (2007) Effect of prebiotic galacto-oligosaccharide, long-chain fructo-oligosaccharide infant formula on serum cholesterol and triacylglycerol levels. Nutrition 23:719–723PubMedCrossRefGoogle Scholar
  5. Anastasovska J, Arora T, Sanchez Canon GJ, Parkinson JR, Touhy K, Gibson GR, Nadkarni NA, So PW, Goldstone AP, Thomas EL, Hankir MK, Van Loo J, Modi N, Bell JD, Frost G (2012) Fermentable carbohydrate alters hypothalamic neuronal activity and protects against the obesogenic environment. Obesity (Silver Spring) 20:1016–1023CrossRefGoogle Scholar
  6. Ashley C, Johnston WH, Harris CL, Stolz SI, Wampler JL, Berseth CL (2012) Growth and tolerance of infants fed formula supplemented with polydextrose (PDX) and/or galactooligosaccharides (GOS): double-blind, randomized, controlled trial. Nutr J 11:38PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barrat E, Michel C, Poupeau G, David-Sochard A, Rival M, Pagniez A, Champ M, Darmaun D (2008) Supplementation with galactooligosaccharides and inulin increases bacterial translocation in artificially reared newborn rats. Pediatr Res 64:34–39PubMedCrossRefGoogle Scholar
  8. Belenguer A, Duncan SH, Calder G, Holtrop G, Louis P, Lobley GE, Flint HJ (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599PubMedPubMedCentralCrossRefGoogle Scholar
  9. Belenguer A, Duncan SH, Holtrop G, Anderson S, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilisation by human fecal microbial communities. Appl Environ Microbiol 73:6526–6533PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bergillos-Meca T, Navarro-Alarcón M, Cabrera-Vique C, Artacho R, Olalla M, Giménez R, Moreno-Montoro M, Ruiz-Bravo A, Lasserrot A, Ruiz-López MD (2013) The probiotic bacterial strain Lactobacillus fermentum D3 increases in vitro the bioavailability of Ca, P, and Zn in fermented goat milk. Biol Trace Elem Res 151:307–314PubMedCrossRefGoogle Scholar
  11. Boucher J, Daviaud D, Siméon-Remaud M, Carpéné C, Saulnier-Blache JS, Monsan P, Valet P (2003) Effect of non-digestible gluco-oligosaccharides on glucose sensitivity in high fat diet fed mice. J Physiol Biochem 59:169–173PubMedCrossRefGoogle Scholar
  12. Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, Flourié B, Brouns F, Bornet FR (2004) The capacity of nondigestible carbohydrates to stimulate faecal bifidobacteria in healthy humans: a double blind, randomized, placebo-controlled, parallel-group, dose response relation study. Am J Clin Nutr 80:1658–1664PubMedGoogle Scholar
  13. Bourriaud C, Robins RJ, Martin L, Kozlowski F, Tenailleau E, Cherbut C, Michel C (2005) Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol 99:201–212PubMedCrossRefGoogle Scholar
  14. Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, Slavin JL (2012) Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr 142:962–974PubMedCrossRefGoogle Scholar
  15. Bunout D, Hirsch S, de la Maza MP, Munoz C, Hascke F, Steenhout P, Klassen P, Barrera G, Gattas V, Petermann M (2002) Effects of prebiotics on the immune response to vaccination in the elderly. JPEN Parenter Enter 26:372–376CrossRefGoogle Scholar
  16. Candela M, Maccaferri S, Turroni S, Carnevali P, Brigidi P (2010) Functional intestinal microbiome, new frontiers in prebiotic design. Int J Food Microbiol 140:93–101PubMedCrossRefGoogle Scholar
  17. Cani PD, Knauf C, Iglesias MA, Drucker DJ, Delzenne NM, Burcelin R (2006a) Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55:1484–1490PubMedCrossRefGoogle Scholar
  18. Cani PD, Joly E, Horsmans Y, Delzenne NM (2006b) Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr 60:567–572PubMedCrossRefGoogle Scholar
  19. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cani PD, Osto M, Geurts L, Everard A (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cecchini DA, Laville E, Laguerre S, Robe P, Leclerc M, Doré J, Henrissat B, Remaud-Siméon M, Monsan P, Potocki-Véronèse G (2013) Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS ONE 8:e72766PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chung WSF, Walker AW, Louis P, Parkhill J, Vermeiren J, Bosscher D, Duncan SH, Flint HJ (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol 14:3PubMedPubMedCentralCrossRefGoogle Scholar
  23. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742PubMedCrossRefGoogle Scholar
  24. Costabile A, Fava F, Röytiö H, Forssten SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson GR, Walton GE (2012) Impact of polydextrose on the faecal microbiota: a double-blind, crossover, placebo-controlled feeding study in health human subjects. Br J Nutr 108:471–481PubMedCrossRefGoogle Scholar
  25. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Qunquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto J-M, Renault P, ANR MicroObes consortium, Doré J, Zucker J-D, Clément K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500:585–588PubMedCrossRefGoogle Scholar
  26. Coxam V (2007) Current data with inulin-type fructans and calcium, targeting bone health in adults. J Nutr 137:2527S–2533SPubMedGoogle Scholar
  27. Cummings JH, Macfarlane GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87:S145–S151PubMedCrossRefGoogle Scholar
  28. Dalvi PS, Nazarians-Armavil A, Purser MJ, Belsham D (2012) Glucagon-like peptide-1 receptor agonist, exendin-4, regulates feeding-associated neuropeptides in hypothalamic neurons in vivo and in vitro. Endocrinology 153:2208–2222PubMedCrossRefGoogle Scholar
  29. de Luis DA, de la Fuente B, Izaola O, Conde R, Gutiérrez S, Morillo M, Teba Torres C (2011) Double blind randomized clinical trial controlled by placebo with an alpha linoleic acid and prebiotic enriched cookie on risk cardiovascular factor in obese patients. Nutr Hosp 26:827–833PubMedGoogle Scholar
  30. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A (2014) Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr 65(1):117–123PubMedCrossRefGoogle Scholar
  31. Delzenne N (2003) Oligosaccharides: state of the art. Proc Nutr Soc 62:177–182PubMedCrossRefGoogle Scholar
  32. Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31:15–31PubMedCrossRefGoogle Scholar
  33. Delzenne NM, Kok N (2001) Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr 73:456S–458SPubMedGoogle Scholar
  34. Delzenne NM, Neyrinck AM, Cani PD (2013) Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr 109:S81–S85PubMedCrossRefGoogle Scholar
  35. Dewulf EM, Cani P, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, Bindels LB, de Vos WM, Gibson GR, Thissen J-P, Delzenne NM (2013) Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–1121PubMedPubMedCentralCrossRefGoogle Scholar
  36. Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78:313–324PubMedCrossRefGoogle Scholar
  37. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ (2002) Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52:2141–2146PubMedGoogle Scholar
  38. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817PubMedPubMedCentralCrossRefGoogle Scholar
  39. Duncan SH, Louis P, Thomson JM, Flint HJ (2009) The role of pH in determining the species composition of the human colonic microbiota. Environ Microbiol 11:2112–2122PubMedCrossRefGoogle Scholar
  40. EFSA Panel on Dietatic Products Nutrition and Allergies (2011) Guidance on the scientific requirements for health claims related to gut and immune function. EFSA J 9:1984Google Scholar
  41. Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 27:73–83PubMedCrossRefGoogle Scholar
  42. Ewaschuk JB, Naylor JM, Zello GA (2005) D-lactate in human and ruminant metabolism. J Nutr 135:1619–1625PubMedGoogle Scholar
  43. Falony G, Vlachou A, Verbrugghe K, de Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841PubMedPubMedCentralCrossRefGoogle Scholar
  44. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111PubMedCrossRefGoogle Scholar
  45. Flint HJ, Scott KP, Louis P, Duncan SH (2012a) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589PubMedCrossRefGoogle Scholar
  46. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012b) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306PubMedPubMedCentralCrossRefGoogle Scholar
  47. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-López J, Pérez-Alvarez JA (2011) Resistant starch as prebiotic: a review. Starch 63:406–415CrossRefGoogle Scholar
  48. Fukushima A, Aizaki Y, Sakuma K (2012) Short-chain fatty acids increase the level of calbindin-D9k messenger RNA in Caco-2 cells. J Nutr Sci Vitaminol (Tokyo) 58:287–291CrossRefGoogle Scholar
  49. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689PubMedCrossRefGoogle Scholar
  50. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  51. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods 7:1–19CrossRefGoogle Scholar
  52. Gilman J, Cashman KD (2006) The effect of probiotic bacteria on transepithelial calcium transport and calcium uptake in human intestinal-like Caco-2 cells. Curr Issues Intest Microbiol 7:1–5PubMedGoogle Scholar
  53. Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M (2011) Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 51:394–409PubMedCrossRefGoogle Scholar
  54. Griffin IJ, Davila PM, Abrams SA (2002) Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br J Nutr 87:S187–S191PubMedCrossRefGoogle Scholar
  55. Guigoz Y, Rochat F, Perruisseau-Carrier G, Rochat I, Schiffrin EJ (2002) Effects of oligosaccharide on the faecal flora and non-specific immune system in elderly people. Nutr Res 22:13–25CrossRefGoogle Scholar
  56. Gullón B, Gómez B, Martínez-Sabajanes M, Yánez R, Parajó JC, Alonso JL (2013) Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol 30:153–161CrossRefGoogle Scholar
  57. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119PubMedCrossRefGoogle Scholar
  58. Hess JR, Birkett AM, Thomas W, Slavin JL (2011) Effects of short-chain fructooligosaccharides on satiety responses in healthy men and women. Appetite 56:128–134PubMedCrossRefGoogle Scholar
  59. Hicks PD, Hawthorne KM, Berseth CL, Marunycz JD, Heubi JE, Abrams SA (2012) Total calcium absorption is similar from infant formulas with and without prebiotics and exceeds that in human milk-fed infants. BMC Pediatr 12:118PubMedPubMedCentralCrossRefGoogle Scholar
  60. Howlett JF, Betteridge VA, Champ M, Craig SAS, Meheust A, Jones JM (2010) The definition of dietary fiber – discussions at the Ninth Vahouny Fiber Symposium: building scientific agreement. Food Nutr Res 54:5750CrossRefGoogle Scholar
  61. Jenkins DJ, Kendall CW, Vuksan V (1999) Inulin, oligofructose and intestinal function. J Nutr 129:1431S–1433SPubMedGoogle Scholar
  62. Jeurink PV, van Esch BC, Rijnierse A, Garssen J, Knippels LM (2013) Mechanisms underlying immune effects of dietary oligosaccharides. Am J Clin Nutr 98:572S–577SPubMedCrossRefGoogle Scholar
  63. Johnson CR, Thavarajah D, Combs GF Jr, Thavarajah P (2013) Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Res Int 51:107–113CrossRefGoogle Scholar
  64. Kleessen B, Blaut M (2005) Modulation of gut mucosal biofilms. Br J Nutr 93:S35–S40PubMedCrossRefGoogle Scholar
  65. Kruger MC, Brown KE, Collett G, Layton L, Schollum LM (2003) The effect of fructooligosaccharides with various degrees of polymerization on calcium bioavailability in the growing rat. Exp Biol Med (Maywood) 228:683–688Google Scholar
  66. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Ameida M, Arumugam M, Batto J-M, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker J-D, Raes J, Hansen T, MetaHIT consortium, Bork P, Wang J, Ehrlich DS, Pedersen O (2013) Richness of human gut microbiome correlates woth metabolic markers. Nature 500:541–546PubMedCrossRefGoogle Scholar
  67. Legette LL, Lee W, Martin BR, Story JA, Campbell JK, Weaver CM (2012) Prebiotics enhance magnesium absorption and inulin-based fibers exert chronic effects on calcium utilization in a postmenopausal rodent model. J Food Sci 77:H88–H94PubMedCrossRefGoogle Scholar
  68. Licht TR, Ebersbach T, Frøkiær H (2012) Prebiotics for prevention of gut infections. Trends Food Sci Technol 23:70–82CrossRefGoogle Scholar
  69. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HM, Garcia-Gil LJ, Flint HJ (2012) Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol 78:420–428PubMedPubMedCentralCrossRefGoogle Scholar
  70. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8PubMedCrossRefGoogle Scholar
  71. Louis P, O’Byrne CP (2010) Life in the gut: microbial responses to stress in the gastrointestinal tract. Sci Prog 93:7–36PubMedCrossRefGoogle Scholar
  72. Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314PubMedCrossRefGoogle Scholar
  73. Lozupone CA, Stornbaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230PubMedPubMedCentralCrossRefGoogle Scholar
  74. Maathuis AJH, van den Heuvel EG, Schoterman MHC, Venema K (2012) Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J Nutr 142:1205–1212PubMedCrossRefGoogle Scholar
  75. Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60PubMedCrossRefGoogle Scholar
  76. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344PubMedGoogle Scholar
  77. Marín-Manzano MC, Abecia L, Hernández-Hernández O, Sanz ML, Montilla A, Olano A, Rubio LA, Moreno FJ, Clemente A (2013) Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of Bifidobacterium animalis in the large intestine of growing rats. J Agric Food Chem 61:7560–7567PubMedCrossRefGoogle Scholar
  78. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes sus-like paradigm. J Biol Chem 284:24673–24677PubMedPubMedCentralCrossRefGoogle Scholar
  79. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2461:1282–1286CrossRefGoogle Scholar
  80. McIntosh FM, Maison N, Holtrop G, Young P, Stevens VH, Ince J, Johnstone AM, Lobley GE, Flint HJ, Louis P (2012) Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14:1876–1887PubMedCrossRefGoogle Scholar
  81. Meslin JC, Andrieux C, Sakata T, Beaumatin P, Bensaada M, Popot F, Szylit O, Durand M (1993) Effects of galacto-oligosaccharide and bacterial status on mucin distribution in mucosa and on large intestine fermentation in rats. Br J Nutr 69:903–912PubMedCrossRefGoogle Scholar
  82. Moro GE, Stahl B, Fanaro S, Jelinek J, Boehm G, Coppa GV (2005) Dietary prebiotic oligosaccharides are detectable in the faeces of formula-fed infants. Acta Paediatr Suppl 94:27–30PubMedCrossRefGoogle Scholar
  83. Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT (2006) Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr 96:570–577PubMedGoogle Scholar
  84. Neyrinck AM, Van Hée VF, Piront N, De Backer F, Toussaint O, Cani PD, Delzenne NM (2012) Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes 2:e28PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819PubMedCrossRefGoogle Scholar
  86. Ohta A, Motohashi Y, Ohtsuki M, Hirayama M, Adachi T, Sakuma K (1998) Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr 128:934–939PubMedGoogle Scholar
  87. Osborn DA, Sinn JK (2013) Prebiotics in infants for prevention of allergy. Cochrane Database Syst Rev 3:CD006474PubMedGoogle Scholar
  88. Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligosaccharides (MOS). Carbohydr Res 360:84–92PubMedCrossRefGoogle Scholar
  89. Overduin J, Schoterman MH, Calame W, Schonewille AJ, Ten Bruggencate SJ (2013) Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br J Nutr 109:1338–1348PubMedCrossRefGoogle Scholar
  90. Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89:1751–1759PubMedCrossRefGoogle Scholar
  91. Peters HP, Boers HM, Haddeman E, Melnikov SM, Qvyjt F (2009) No effect of added beta-glucan or of fructooligosaccharide on appetite or energy intake. Am J Clin Nutr 89:58–63PubMedCrossRefGoogle Scholar
  92. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P (2009) Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 101:541–550PubMedCrossRefGoogle Scholar
  93. Raninen K, Lappi J, Mykkänen H, Poutanen K (2011) Dietary fiber type reflects physiological functionality: comparison of grain fiber, inulin, and polydextrose. Nutr Rev 69:9–21PubMedCrossRefGoogle Scholar
  94. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63PubMedCrossRefGoogle Scholar
  95. Rossi M, Corradini C, Amaretti A, Nicolini M, Pompei A, Zanoni S, Matteuzzi D (2005) Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol 71:6150–6158PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rozan P, Nejdi A, Hidalgo S, Bisson JF, Desor D, Messaoudi M (2008) Effects of lifelong intervention with an oligofructose-enriched inulin in rats on general health and lifespan. Br J Nutr 100:1192–1199PubMedCrossRefGoogle Scholar
  97. Russell W, Duthie G (2011) Symposium on ‘nutrition: getting the balance right in 2010’. Session 3: influences of food constituents on gut health plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc 70:389–396PubMedCrossRefGoogle Scholar
  98. Russell WR, Hoyles L, Flint HJ, Dumas ME (2013) Colonic bacterial metabolites and human health. Curr Opin Microbiol 16:246–254PubMedCrossRefGoogle Scholar
  99. Russo F, Linsalata M, Clemente C, Chiloiro M, Orlando A, Marconi E, Chimienti G, Riezzo G (2012) Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 32:940–946PubMedCrossRefGoogle Scholar
  100. Ryan SM, Fitzgerald GF, Van Sinderen D (2006) Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in Bifidobacterial strains. Appl Environ Microbiol 72:5289–5296PubMedPubMedCentralCrossRefGoogle Scholar
  101. Scholz-Ahrens KE, Schrezenmeir J (2002) Inulin, oligofructose and mineral metabolism – experimental data and mechanism. Br J Nutr 87:S179–S186PubMedCrossRefGoogle Scholar
  102. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Açil Y, Glüer CC, Schrezenmeir J (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838S–846SPubMedGoogle Scholar
  103. Scott KP, Martin JC, Duncan SH, Flint HJ (2013) Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol 87(1):30–40PubMedCrossRefGoogle Scholar
  104. Seifert S, Watzl B (2007) Inulin and oligofructose: review of experimental data on immune modulation. J Nutr 137:2563S–2567SPubMedGoogle Scholar
  105. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435PubMedPubMedCentralCrossRefGoogle Scholar
  106. Slavin J, Green H (2007) Dietary fibre and satiety. Nutr Bull 32:32–42CrossRefGoogle Scholar
  107. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736PubMedPubMedCentralCrossRefGoogle Scholar
  108. Salonen A, Lahti L, Salojärvi J, Holtrop G, Korpela K, Duncan SH, Date P, Farquharson F, Johnstone AM, Lobley GE, Louis P, Flint HJ, de Vos W (2014) Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J 8:2218–2230PubMedCrossRefGoogle Scholar
  109. Speert DP, Eftekhar F, Puterman ML (1984) Nonopsonic phagocytosis of strains of Pseudomonas aeruginosa from cystic fibrosis patients. Infect Immun 43:1006–1011PubMedPubMedCentralGoogle Scholar
  110. Tabbers MM, Boluyt N, Berger MY, Benninga MA (2011) Nonpharmacologic treatments for childhood constipation: systematic review. Pediatrics 128:753–761PubMedCrossRefGoogle Scholar
  111. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J-P, Ugarte E, Munoz-Tamayo R, Paslier DLE, Nallin R, Doré J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584PubMedCrossRefGoogle Scholar
  112. Thakur M, Connellan P, Deseo MA, Morris C, Praznik W, Loeppert R, Dixit VK (2012) Characterization and in vitro immunomodulatory screening of fructo-oligosaccharides of Asparagus racemosus Willd. Int J Biol Macromol 50:77–81PubMedCrossRefGoogle Scholar
  113. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble F (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JPE (2011) Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am J Clin Nutr 93:62–72PubMedCrossRefGoogle Scholar
  115. Van den Abbeele P, Verstraete W, El Aidy S, Geirnaert A, Van de Wiele T (2013) Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microb Biotechnol 6:335–340PubMedPubMedCentralCrossRefGoogle Scholar
  116. van den Heuvel EG, Schoterman MH, Muijs T (2000) Transgalactooligosaccharides stimulate calcium absorption in postmenopausal women. J Nutr 130:2938–2942PubMedGoogle Scholar
  117. Vandenplas Y, De Greef E, Hauser B, Devreker T, Veereman-Wauters G (2013) Probiotics and prebiotics in pediatric diarrheal disorders. Expert Opin Pharmacother 14:397–409PubMedCrossRefGoogle Scholar
  118. Vernia P, Caprilli R, Latella G, Barbetti F, Magliocca FM, Cittadini M (1988) Fecal lactate and ulcerative colitis. Gastroenterology 95:1564–1568PubMedGoogle Scholar
  119. Vulevic J, Drakoularakou A, Yaqoob P, Tzortzis G, Gibson GR (2008) Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am J Clin Nutr 88:1438–1446PubMedGoogle Scholar
  120. Vulevic J, Juric A, Tzortzis G, Gibson GR (2013) A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr 143:324–331PubMedCrossRefGoogle Scholar
  121. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700PubMedPubMedCentralCrossRefGoogle Scholar
  122. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230PubMedPubMedCentralCrossRefGoogle Scholar
  123. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, McCabe LD, McCabe GP, Duignan S, Schoterman MH, van den Heuvel EG (2011) Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem 59:6501–6510PubMedCrossRefGoogle Scholar
  124. Westerbeek EA, van den Berg A, Lafeber HN, Fetter WP, van Elburg RM (2011) The effect of enteral supplementation of a prebiotic mixture of non-human milk galacto-, fructo- and acidic oligosaccharides on intestinal permeability in preterm infants. Br J Nutr 105:268–274PubMedCrossRefGoogle Scholar
  125. Whelan K (2011) Probiotics and prebiotics in the management of irritable bowel syndrome: a review of recent clinical trials and systematic reviews. Curr Opin Clin Nutr Metab Care 14:581–587PubMedCrossRefGoogle Scholar
  126. Whelan K (2013) Mechanisms and effectiveness of prebiotics in modifying the gastrointestinal microbiota for the management of digestive disorders. Proc Nutr Soc 72:288–298PubMedCrossRefGoogle Scholar
  127. Yap KW, Mohamed S, Yazid AM, Maznah I, Meyer DM (2005) Dose-response effects of inulin on the faecal fatty acids content and mineral absorption of formula-fed infants. Nutr Food Sci 35:208–219CrossRefGoogle Scholar
  128. Yoo H-D, Kim D, Paek S-H, Oh S-E (2012) Plant cell wall polysaccharides as potential resources for the development of novel prebiotics. Biomol Ther 20:371–379CrossRefGoogle Scholar
  129. Ze X, Duncan SH, Louis P, Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6:1535–1543PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ (2008) Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. Am J Physiol Endocrinol Metab 295:E1160–E1166PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Petra Louis
    • 1
    Email author
  • Harry J. Flint
    • 1
  • Catherine Michel
    • 2
  1. 1.Microbiology GroupRowett Institute of Nutrition and Health, University of AberdeenAberdeenUK
  2. 2.UMR Physiologie des Adaptations NutritionnellesUniversité de Nantes, INRA, HNB1- CHU-Hotel DIEUNANTES Cedex 1France

Personalised recommendations