Energy Implications of Common Operations in Resource-Intensive Java-Based Scientific Applications

  • Cristian Mateos
  • Ana Rodriguez
  • Mathias Longo
  • Alejandro Zunino
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 444)


Today’s scientific applications usually take considerable time to run, and hence parallel computing environments, such as Grids and data centers/Clouds, have emerged. Indeed, traditionally, much research in high-performance computing has been conducted with the goal of executing such applications as fast as possible. However, energy has recently been recognized as another crucial goal to consider, because of its negative economic and ecological implications. Energy-driven solutions in these environments are mostly focused on the hardware and middleware layers, but little efforts target the application level. We revisit a catalog of primitives commonly used in object oriented-based scientific programming, or micro-benchmarks, to identify energy-friendly variants of the same primitive. Based on this, we refactor three existing scientific applications, resulting in energy improvements ranging from 2.58 to 96.74 %.


Energy Scientific application Java Micro-benchmarks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.Google Scholar
  2. 2.
    A. Barisone, F. Bellotti, R. Berta, and A. De Gloria. Jsbricks: a suite of microbenchmarks for the evaluation of java as a scientific execution environment. Future Generation Computer Systems, 18:293–306, 2001.Google Scholar
  3. 3.
    R. Basmadjian, P. Bouvry, G. Da Costa, L. Gyarmati, D. Kliazovich, S. Lafond, L. Lefevre, H. De, J.-M. P. Meer, R. Pries, J. Torres, T. Trinh, and S. Khan. Green data centers. Large-Scale Distributed Systems and Energy Efficiency: A Holistic View, pages 159–196, 2015.Google Scholar
  4. 4.
    A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future generation computer systems, 28(5):755–768, 2012.Google Scholar
  5. 5.
    J. Bloch. Effective Java. Prentice-Hall, 2 edition, 2008.Google Scholar
  6. 6.
    A. S. Christensen, A. Moller, and M. I. Schwartzbach. Precise analysis of string expressions. In 10th International Static Analysis Symposium, volume 2694 of Lecture Notes in Computer Science, pages 1–18, 2003.Google Scholar
  7. 7.
    European Commission. Code of conduct on data centres energy efficiency. Technical report, Institute for Energy, Renewable Energies Unit, 2009. Version 2.0.Google Scholar
  8. 8.
    N. Fernando, S. W. Loke, and W. Rahayu. Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1):84–106, 2013.Google Scholar
  9. 9.
  10. 10.
    A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research problems in data center networks. ACM SIGCOMM Computer Communication Review, 39(1):68–73, 2008.Google Scholar
  11. 11.
    M. Gulamali, A. McGough, S. Newhouse, and J. Darlington. Using iceni to run parameter sweep applications across multiple grid resources. In Global Grid Forum 10, Case Studies on Grid Applications Workshop. Citeseer, 2004.Google Scholar
  12. 12.
    M. Hirsch, J. M. Rodriguez, A. Zunino, and C. Mateos. Battery-aware centralized schedulers for cpu-bound jobs in mobile grids. Pervasive and Mobile Computing, 2015. In press.Google Scholar
  13. 13.
    A. Nicolaos, K. Vasileios, A. George, M. Harris, K. Angeliki, and G. Costas. A data locality methodology for matrix-matrix multiplication algorithm. Journal of Supercomputing, 59:830–851, 2012.Google Scholar
  14. 14.
    E. Pacini, C. Mateos, and C. G. Garino. Distributed job scheduling based on swarm intelligence: A survey. Computers & Electrical Engineering, 40(1):252–269, 2014.Google Scholar
  15. 15.
    S. Papadimitriou, K. Terzidis, S. Mavroudi and S. Likothanassis. Exploiting java scientific libraries with the scala language within the scalalab environment. IET Software, 5:543–551, 2011.Google Scholar
  16. 16.
    C. Pautasso, E. Wilde, and R. Alarcon. REST: Advanced Research Topics and Practical Applications. Springer, 2014.Google Scholar
  17. 17.
    A. Rodríguez, C. Mateos, and A. Zunino. Mobile devices-aware refactorings for scientific computational kernels. In 41 JAIIO - AST 2012, pages 61–72, 2012.Google Scholar
  18. 18.
    A. Rodriguez, C. Mateos, A. Zunino, and M. Longo. An analysis of the effects of bad smell-driven refactorings in mobile applications on battery usage. In Modern Software Engineering Methodologies for Mobile and Cloud Environments. IGI Global, 2015. In press.Google Scholar
  19. 19.
    C.-H. Sun, B.-J. Kim, G.-S. Yi, and H. Park. A model of problem solving environment for integrated bioinformatics solution on grid by using condor. In Grid and Cooperative Computing, pages 935–938. Springer, 2004.Google Scholar
  20. 20.
    G. L. Taboada, S. Ramos, R. R. Exposito, J. Tourino, and R. Doallo. Java in the high performance computing arena: Research, practice and experience. Science of Computer Programming, 78(5):425–444, 2013.Google Scholar
  21. 21.
    R. V. van Nieuwpoort, G. Wrzesińska, C. J. Jacobs, and H. E. Bal. Satin: A high-level and efficient grid programming model. ACM Transactions on Programming Language and Systems, 32(3):1–39, 2010.Google Scholar
  22. 22.
    J. M. Wozniak, A. Striegel, D. Salyers, and J. A. Izaguirre. Gipse: Streamlining the management of simulation on the grid. In 38th annual Symposium on Simulation, pages 130–137. IEEE Computer Society, 2005.Google Scholar
  23. 23.
    J. Zhang. Comparative study of several intelligent algorithms for knapsack problem. Procedia Environmental Sciences, 11:163–168, 2011.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cristian Mateos
    • 1
    • 2
  • Ana Rodriguez
    • 1
    • 2
  • Mathias Longo
    • 1
    • 2
  • Alejandro Zunino
    • 1
    • 2
  1. 1.ISISTAN Research InstituteUNICEN UniversityTandilArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)SarmientoArgentina

Personalised recommendations