Modeling and Verification of an Interrupt System in \(\mu \)C/OS-III with TMSVL

  • Jin Cui
  • Zhenhua DuanEmail author
  • Cong Tian
  • Nan Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9559)


Interrupt mechanism is a useful means to ensure timely response to asynchronous events in real-time systems. Modeling and verification of the correctness of interrupt systems are important in practice. This paper proposes an efficient way to formalize the interrupt mechanism in TMSVL. We apply TMSVL to model and verify a timer interrupt application running under \(\mu \)C/OS-III. To do so, the real-time system is formalized in TMSVL, and properties to be verified are specified by projection temporal logic (PTL) formulas or TMSVL statements. Then a model checker built in the toolkit MSV is employed to check whether or not the model satisfies the properties automatically.


Real-time systems Interrupt Schedulability \(\mu \)C/OS-III Model checking 


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. Lect. Notes Comput. Sci. 4(12), 200–236 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: KRONOS: a model-checking tool for real-time systems (Tool-presentation for FTRTFT 1998). In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 298–302. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Choi, Y.: Model checking trampoline OS: a case study on safety analysis for automotive software. Softw. Test. Verif. Reliab. 24(1), 38–60 (2014)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: Notes on structured programming. Structured Programming, pp. 1–82. Academic Press Ltd., New York (1972)Google Scholar
  6. 6.
    Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Program. 70(1), 31–61 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic programming. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Huang, J.C.: An approach to program testing. ACM Comput. Surv. (CSUR) 7(3), 113–128 (1975)CrossRefzbMATHGoogle Scholar
  10. 10.
    Labrosse, J.J.: uC/OS-III. The Real-Time Kernel. Micrium Press, Weston (2009)Google Scholar
  11. 11.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  12. 12.
    Lundqvist, K., Asplund, L.: A ravenscar-compliant run-time kernel for safety-critical systems. Real-Time Syst. 24(1), 29–54 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lv, M., Guan, N., Deng, Q., Ge, Y., Wang, Y.: Static worst-case execution time analysis of the \(\mu \)C/OS-II real-time kernel. Front. Comput. Sci. China 4(1), 17–27 (2010)CrossRefGoogle Scholar
  14. 14.
    Waszniowski, L., Hanzlek, Z.: Formal verification of multitasking applications based on timed automata model. Real-Time Syst. 38(1), 39–65 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Waszniowski, L., Krákora, J., Hanzálek, Z.: Case study on distributed and fault tolerant system modeling based on timed automata. J. Syst. Softw. 82(10), 1678–1694 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ICTT and ISN LaboratoryXidian UniversityXi’anPeople’s Republic of China

Personalised recommendations