Pseudomonas for Industrial Biotechnology

  • Rachhpal S. KahlonEmail author


Pseudomonas are known for their ubiquitous nature and metabolic diversity enabling them to survive in a wide range of ecological niches in terrestrial and marine environments as well as in association with animals and plants. They are characterized with enormous biosynthetic capacity and production of a wide range of secondary metabolites and are endowed with an array of enzymes and metabolic pathways. Genomes of about 70 different strains of Pseudomonas spp. have been fully sequenced, and their vast genetic potential for biotechnological applications such as synthesis of small molecular weight chiral compounds, biopolymer production, bioremediation of organic chemical pollutants, biocontrol of plant diseases and soilborne pathogens and lately for production of heterologous proteins and molecules has been elucidated. Pseudomonas also show high degree of robustness and tolerance to extreme environmental conditions of temperature, pH, presence of toxins and solvents required for industrial exploitation. Pseudomonas putida KT2440 has been certified as ‘generally regarded as safe’ (GRAS) for gene cloning and expression of foreign DNA, thus providing novel possibilities to engineer this organism not only for industrial applications but also for production of heterologous proteins. Techniques of system biology and expanding genomic databases will go a long way to expand the range of products formed by manipulating the metabolic pathways and develop as efficient cell factories.


Synthetic Biology Pseudomonas Putida Pseudomonas Fluorescens Fusaric Acid Rhamnolipid Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Mawgoud AM, Lepine F, Deniel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Hausmann R, Lepine F, Muller MM, Deziel E (2011) Rhamnolipids: detection analysis, biosynthesis, genetic regulation and bioengineering of production. In: Soberon-Chavez G (ed) Biosurfactants. Springer, Berlin, pp 13–55CrossRefGoogle Scholar
  3. Agnew DE, Pfleger BF (2012) Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem Eng Sci 103:58–67CrossRefGoogle Scholar
  4. Ahmed K, Shaik AB, Kumar CG et al (2012) Metabolic profiling and biological activities of bioactive compounds produced in Pseudomonas spp. Strain ICTB-745 isolated from Ladakh, India. J Microbiol Biotechnol 22:69–79CrossRefGoogle Scholar
  5. Aiyer PV (2005) Amylases and their applications. Afr J Biotechnol 4:1525–1529Google Scholar
  6. Allard ST, Giraud MF, Whitfield C, Graninger M, Messner P, Naismith JH (2001) The crystal structure of dTDP-D-glucose 4,6-dehydratase (RmlB) from Salmonella enteric serovar typhimurium, the second enzyme in dTDP-L-rhamnose pathway. J Mol Biol 307:283–295PubMedCrossRefGoogle Scholar
  7. Andra J, Rademann J, Howe J, Koch MH et al (2000) Endotoxin-like properties of a rhamnolipid exotoxin from Burkholderia (Pseudomonas)plantarii: Immune cell stimulation and biophysical characterization. J Biol Chem 387:301–310Google Scholar
  8. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of Pseudomonas based on 16 rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589PubMedCrossRefGoogle Scholar
  9. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Ind J Biotechnol 6:141–158Google Scholar
  10. Arino S, Marchal R, Vandecastele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168CrossRefGoogle Scholar
  11. Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:67PubMedPubMedCentralCrossRefGoogle Scholar
  12. Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Biorem Biodegrad 1:112CrossRefGoogle Scholar
  13. Balmer D, Planchamp C, Mauch-Mani B (2013) On the move: induced resistance in monocots. J Exp Bot 64:1249–1261PubMedCrossRefGoogle Scholar
  14. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedCrossRefGoogle Scholar
  15. Banno T, Toyota T, Maksumura S (2012) Creation of novel green surfactants containing carbonate linkages. J Surfactants Deterg 13:387–398CrossRefGoogle Scholar
  16. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA toolbox. Nat Protoc 2:727–738PubMedCrossRefGoogle Scholar
  17. Benincasa M (2007) Rhamnolipid produced from agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54:445–449PubMedCrossRefGoogle Scholar
  18. Berdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1–26PubMedCrossRefGoogle Scholar
  19. Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid R, Altenbuchner J, Urlacher V (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl Microbiol Biotechnol 89:1137–1147PubMedCrossRefGoogle Scholar
  20. Bian YZ, Wang Y, Guli S, Chen GQ, Wu Q (2009) Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyalkanoate) conduits for peripheral nerve generation. Biomaterials 30:217–225PubMedCrossRefGoogle Scholar
  21. Bjørnlund L, Rønn R, Péchy-Tarr M, Maurhofer M, Keel C, Nybroe O (2009) Functional GacS in Pseudomonas DSS73 prevents digestion by Caenorhabditis elegans and protects the nematode from killer flagellates. ISME J 3:770–779PubMedCrossRefGoogle Scholar
  22. Blank LM, Ionidis G, Ebert BE, Buhler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in presence of a second octanol phase. FEBS J 275:5173–5190PubMedCrossRefGoogle Scholar
  23. Blank LM, Rosenau F, Wilhelm S, Wittgens A, Tiso T (2013) Means and methods of rhamnolipid production. Patent No. EP2573172A1Google Scholar
  24. Blankenfeldt W, Asuncion M, Lam JS, Naismith JH (2000) The structural basis of catalytic mechanism and regulation of glucose-1-phosphate thymidylyltransferase (RmlA). EMBO J 19:6652–6663PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350PubMedCrossRefGoogle Scholar
  26. Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Jahn D, Poblete-Castro I (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 13:88PubMedPubMedCentralCrossRefGoogle Scholar
  27. Brenner K, You L, Arnod FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489PubMedCrossRefGoogle Scholar
  28. Brune KD, Bayer TS (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3:203PubMedPubMedCentralCrossRefGoogle Scholar
  29. Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102:7004–7007PubMedCrossRefGoogle Scholar
  30. Buddrus-Schiemann K, Schmid M, Schreiner K, Welzel G, Hartmann A (2010) Root colonization by Pseudomonas sp. DSMZ13134 and impact on the indigenous rhizosphere bacterial community of barley. Microb Ecol 60:381–393PubMedCrossRefGoogle Scholar
  31. Bultel-Poncé V, Berge J-P, Debitus C, Nicolas J-L, Guyot M (1999) Metabolites from the sponge-associated bacterium Pseudomonas species. Mar Biotechnol 1:384–390PubMedCrossRefGoogle Scholar
  32. Burkholder PR, Paster RM, Leitz FH (1966) Production of a pyrrole antibiotic by a marine bacterium. Appl Microbiol 14:649–653PubMedPubMedCentralGoogle Scholar
  33. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116CrossRefGoogle Scholar
  34. Cao Q, Zhang J (2012) 3-hydroxyalkanoates methyl esters as Alzheimer disease drugs. 13th International Symposium on Biopolymers (ISBP 2012), Cairns, AustraliaGoogle Scholar
  35. Cao L, Wang Q, Zhang J, Li C, Yan X et al (2012) Construction of a table genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil. World J Microbiol Biotechnol 28:2783–2790PubMedCrossRefGoogle Scholar
  36. Cases I, de Lorenzo V (1998) Expression systems and physiological control of promoter activity in bacteria. Curr Opin Microbiol 1:303–310PubMedCrossRefGoogle Scholar
  37. Cha M, Lee N, Kim M, Kim L, Lee S (2008) Heterologous production of P. aeruginosa EMS-1 biosurfactant in Pseudomonas putida. Bioresour Technol 99:2192–2199PubMedCrossRefGoogle Scholar
  38. Chakrabarty AM (1976) Plasmids in Pseudomonas. Annu Rev Genet 10:7–30PubMedCrossRefGoogle Scholar
  39. Chavaria M, Nikel PI, Perez-Pantoja D, de Lorenzo V (2013) The Entener-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785CrossRefGoogle Scholar
  40. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446PubMedCrossRefGoogle Scholar
  41. Chen GQ, Wu Q (2005) Microbial production and application of chiral hydroxyalkanoates. Appl Microbiol Biotechnol 67:592–599PubMedCrossRefGoogle Scholar
  42. Chen SY, Lu WB, Wei YH, Chen WM, Chan SJ (2007) Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol Prog 23:661–666PubMedCrossRefGoogle Scholar
  43. Chythanya R, Karunasagar I, Karunasagar I (2002) Inhibition of shrimp pathogenic vibrios by a marine Pseudomonas I-2 strain. Aquaculture 208:1–10CrossRefGoogle Scholar
  44. Clarke P (1982) The metabolic versatility of Pseudomonas. Antonie Van Leeuwenhoek 48:105–130PubMedCrossRefGoogle Scholar
  45. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  46. Costa SGVAO, Nischke M, Lepine F, Deziel E, Contiero J (2010) Structure properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava waste water. Process Biochem 45:1511–1516CrossRefGoogle Scholar
  47. Craik CS, Page MJ, Madison E (2011) Proteases as therapeutics. Biochem J 435:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  48. Danchin A (2012) Scaling up biology: do not forget the chassis. FEBS Lett 586:2129–2137PubMedCrossRefGoogle Scholar
  49. Davies HG, Green RH, Kely DR, Roberts SM (1990) Recent advances in generation of chiral intermediates using enzymes. Crit Rev Biotechnol 10:129–152PubMedCrossRefGoogle Scholar
  50. De Bont J (1998) Solvent tolerant bacteria in biocatalysis. Tibtech 16:493–499CrossRefGoogle Scholar
  51. De Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589PubMedCrossRefGoogle Scholar
  52. Défago G (1993) 2,4-Diacetylphloroglucinol, a promising compound in bio-control. Plant Pathol 42:311–312CrossRefGoogle Scholar
  53. del Castillo T, Ramos JL, Rodriguez-Harva JJ et al (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152PubMedPubMedCentralCrossRefGoogle Scholar
  54. del Castillo T, Ramos JL, Duque E (2008) A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339PubMedPubMedCentralCrossRefGoogle Scholar
  55. Devi KK, Kothamasi D (2009) Pseudomonas fluorescens CHA01 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome C oxidase of the termite respiratory chain. FEMS Microbiol Lett 300:195–200PubMedCrossRefGoogle Scholar
  56. Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta Mol Cell Biol Lipids 1440:244–252CrossRefGoogle Scholar
  57. Déziel E, Lépine F, Milot S, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta Mol Cell Biol Lipids 1485:145–152CrossRefGoogle Scholar
  58. Deziel E, Lepine F, Millot S, Villemur R (2003) RhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkaoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Micobiology 149:2005–2013Google Scholar
  59. Di Maio S, Polizzotto G, Di Gangi E, Foresta G, Genna G et al (2012) Biodiversity of indigenous Saccharomyces populations from Old Wineries of South-Eastern Sicily (Italy):preservation and economic potential. PLoS One 7, e30428PubMedPubMedCentralCrossRefGoogle Scholar
  60. Di Santo R, Costi R, Artico M, Massa S, Lampis G, Deidda D, Pompei R (1998) Pyrrolnitrin and related pyrroles endowed with antibacterial activities against Mycobacterium tuberculosis. Bioorg Med Chem Lett 8:2931–2936PubMedCrossRefGoogle Scholar
  61. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400CrossRefGoogle Scholar
  62. Driouch H, Melzer G, Wittmann C (2012) Integration of in vivo and in silico metabolic fluxes for improvement of recombinant protein production. Metab Eng 14:47–58PubMedCrossRefGoogle Scholar
  63. Dubeau D, Dezial E, Woods D, Lepine F (2009) Burkholderia thailandensis harbours two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol 9:263PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ertesvag H, Hoidal HK, Schjerven H, Svanem BI, Valla S (1999) Mannuronan C-5-epimerases and their application for in vitro and in vivo design of new alginates useful in biotechnology. Metab Eng 1:262–269PubMedCrossRefGoogle Scholar
  66. Escapa I, Morales V, Martino V, Pollet E, Averous L et al (2011) Disruption of B-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598PubMedCrossRefGoogle Scholar
  67. Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N et al (2005) Isolation and characterization of solvent tolerant Pseudomonas putida strain T-57 and its application to biotransformation of toluene to cresol in two phase (organic-aqueous) system. I Ind Micobiol Biotechnol 32:542–547CrossRefGoogle Scholar
  68. Fakruddin MD (2012) Biosurfactant: production and application. J Pet Environ Biotechnol 3:1–5Google Scholar
  69. Foley PL, Shuler ML (2010) Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng 105:26–36PubMedCrossRefGoogle Scholar
  70. Fracchia L, Banat JJ, Cavallo M, Ceresa C, Banat IM (2015) Potential therapeutic applications of microbial surface-active compounds. Bioengineering 2:144–162CrossRefGoogle Scholar
  71. Franklin FC, Bagalasarian M, Bagdasarian MM, Tinmis K (1981) Molecular and functional analysis of TOL plasmids PWWO from P. putida and cloning genes for entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci 78:7458–7462PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359PubMedCrossRefGoogle Scholar
  73. Freiberg C, Pohlmann J, Nell PG, Endermann R, Schuhmacher J et al (2006) Novel bacterial acetyl coenzyme A carboxylase inhibitors with antibiotic efficacy in vivo. Antimicrob Agents Chemother 50:2707–2712PubMedPubMedCentralCrossRefGoogle Scholar
  74. Freire DMG, Araujo LV, Kronemberger FA, Nitschke M (2010) Biosurfactants as emerging additives in food processing. In: Ribiero CP, Passos ML (eds) Food engineering: new techniques and products. CRC Press, Boca Raton, FL, pp 685–705Google Scholar
  75. Frey AD, Kallio PT (2003) Bacterial hemoglobin and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol Rev 27:525–545PubMedCrossRefGoogle Scholar
  76. Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221CrossRefGoogle Scholar
  77. Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36, e113PubMedPubMedCentralCrossRefGoogle Scholar
  78. Furrer P, Panke S, Zinn H (2007) Efficient recovery of low endotoxin medium lengths poly [R-]-3 hydroxyalkanoate from bacterial biomass. J Microbiol Methods 69:206–213PubMedCrossRefGoogle Scholar
  79. Furuyoshi S, Nishigouri J, Kawabata N, Tanaka H, Soda K (1991) D-glycerate production from L-tartrate by cells of Pseudomonas sp. with high content of L-tartrate decarboxylase. Agric Biol Chem 55:1515–1519Google Scholar
  80. Galán B, Díaz E, García JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694PubMedCrossRefGoogle Scholar
  81. Gharaei-Fathabad E (2011) Biosurfactants in pharmaceutical industry: a mini review. Am J Drug Disc Dev 1:58–69CrossRefGoogle Scholar
  82. Giovannoni SJ, Vergin KL (2012) Seasonality in ocean microbial communities. Science 335:671–676PubMedCrossRefGoogle Scholar
  83. Glandorf DC, Verheggen P, Jansen T et al (2001) Effect of genetically modified Pseudomonas putida WCS358r on fungal rhizosphere microflora of field grown wheat. Appl Environ Microbiol 67:3371–3378PubMedPubMedCentralCrossRefGoogle Scholar
  84. Graninger M, Nidetzky B, Heinrichs DE, Whitfield C, Messner P (1999) Characterization of dTDP-4-dehydrorhamnnose 3,5-epimerase and dTDP-4-dehydrorhamnose reductase, required for dTDP-L-rhamnose biosynthesis in Salmonella enterica serovar Typhimurium LT2. J Biol Chem 274:25069–25077PubMedCrossRefGoogle Scholar
  85. Gross F, Ring MW, Perlova O, Fu J et al (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13:1253–1264PubMedCrossRefGoogle Scholar
  86. Gross R, Lang K, Bühler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717PubMedGoogle Scholar
  87. Guerra-Santos L, Kappeli O, Fiecher A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol 48:301–305PubMedPubMedCentralGoogle Scholar
  88. Gunther NW, Nunez A, Fett W, Solaiman DKY (2005) Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl Environ Microbiol 71:2288–2293PubMedPubMedCentralCrossRefGoogle Scholar
  89. Gunther NW, Nunez A, Fortis L, Solaiman DKY (2006) Proteomic based investigation of rhamnolipid production by Pseudomonas chlororaphis strain NRRL B-30761. J Ind Microbiol Biotechnol 33:914–920PubMedCrossRefGoogle Scholar
  90. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases; molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32PubMedCrossRefGoogle Scholar
  91. Hany R, Bohlen C, Geiger T et al (2004) Toward nontoxic antifouling: synthesis of hydroxycinnamic acid sulphate, and zosteric acid labeled Poly[3-hydroxyalkanoates]. Biomacromolecules 5:1452–1456PubMedCrossRefGoogle Scholar
  92. Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum degradation in marine environment. J Mol Microbiol Biotechnol 1:63–70PubMedGoogle Scholar
  93. Hashimoto Y (2002) Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep Hokkaido Pref Agric Exp Station 102:1–48Google Scholar
  94. Hashimoto H, Goto M, Katayama C, Kitahata S (1991) Purification and some properties of α-galactosidase from Pseudomonas fluorescens H-601. Agric Biol Chem 55:2831–2838Google Scholar
  95. Haynes WC, Stodola FH, Locke JM, Pridham TG, Conway HF, Sohns BE, Jackson RW (1956) Pseudomonas aureofaciens Kluyver and phenazine-α-carboxylic acid, its characteristic pigments. J Bacteriol 72:412–417PubMedPubMedCentralGoogle Scholar
  96. Hazer B, Steinbüchel A (2007) Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74:1–12PubMedCrossRefGoogle Scholar
  97. He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100:250–259PubMedCrossRefGoogle Scholar
  98. Held M, Suske W, Schmid A, Engesser KH, Kohler HPE et al (1998) Preparative scale production of 3-substituted catechols using a novel monooxygenase from Pseudomonas azelaica HBP 1. J Mol Catal B Enzym 5:87–93CrossRefGoogle Scholar
  99. Hermes HFM, Sonke T, Peters PJH, van Balken JAM, Kamphuis J, Dijkhuizen L, Meijer EM (1993) Purification and characterization of an l-aminopeptidase from Pseudomonas putida ATCC 12633. Appl Environ Microbiol 59:4330–4334PubMedPubMedCentralGoogle Scholar
  100. Hoffman N, Rehm BHA (2005) Nitrogen-dependent regulation of medium chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol Lett 27:279–282CrossRefGoogle Scholar
  101. Hӧrmann B, Muller MM, Syldatk C, Hausman R (2010) Rhamnolipid production by Burkholderia plantarii DS9509. Eur J Lip Sci Technol 112:674–680CrossRefGoogle Scholar
  102. Huertas M, Duque E (1998) Survival in soil of different toluene degrading Pseudomonas strains after solvent shock. Appl Environ Microbiol 64:38–42PubMedPubMedCentralGoogle Scholar
  103. Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of polyhydroxyalkanoate is a common feature of fluorescent pseudomonads. Appl Environ microbiol 55:1949–1954PubMedPubMedCentralGoogle Scholar
  104. Isnansetyo A, Kamei Y (2009) Bioactive substances produced by marine isolates of Pseudomonas. J Ind Microbiol Biotechnol 36:1239–1248PubMedCrossRefGoogle Scholar
  105. Isnansetyo A, Cui L, Hiramatsu K, Kamei Y (2003) Antibacterial activity of 2, 4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int J Antimicrob Agents 22:545–547PubMedCrossRefGoogle Scholar
  106. Jang JY, Yang SY, Kim YC, Lee CW, Park MS, Kim JC et al (2013) Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem 61:6786–6791PubMedCrossRefGoogle Scholar
  107. Jimenez JI, Miambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841PubMedCrossRefGoogle Scholar
  108. Johnson CW, Beckham GT (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Metabolic Eng 28:240–247CrossRefGoogle Scholar
  109. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and immune system. Nature 474:327–336PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kavitha K, Mathiyazhagan S, Sendhilvel V, Nakkeeran S, Chandrasekar G, Fernando WGD (2005) Broad spectrum action of phenazine against active and dormant structures of fungal pathogens and root knot nematode. Arch Phytopathol 38:69–76CrossRefGoogle Scholar
  111. Kennedy RK, Naik PR, Veena V, Lakshmi BS, Lakshmi P et al (2015) 5-methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. Chem Biol Interact 231:71–82PubMedCrossRefGoogle Scholar
  112. Kerster K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer KH (1996) Recent changes in the classification of pseudomonads: an overview. Syst Appl Microbiol 19:465–477CrossRefGoogle Scholar
  113. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619CrossRefGoogle Scholar
  114. Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew Chem Int Ed Engl 31:774–775CrossRefGoogle Scholar
  115. Kim DY, Kim HW, Chung MG, Rhee YH (2007a) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45:87–97PubMedGoogle Scholar
  116. Kim JD, Kim B, Lee CG (2007b) Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol Control 41:296–303CrossRefGoogle Scholar
  117. Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS III, Ryu CM (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1547–1555Google Scholar
  118. Kimura H, Miyashita H, Sumino Y (1996) Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactagenum YK90. Appl Microbiol Biotechnol 45:490–501PubMedGoogle Scholar
  119. Klinke S, Dauner M, Scott G, Kessler B, Witholt B (2000) Inactivation of isocitrate lyase leads to increased production of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas putida. Appl Environ Microbiol 66:909–913PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M (2015) Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill waste water under limiting conditions. Int J Biol Macromol 74:202–210PubMedCrossRefGoogle Scholar
  121. Kueppler J, Ruijssnaars HJ, Blank LM, de Winde JH, Wierckx N (2015) Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including mega plasmid pTTS12. J Biotechnol 107:546–556Google Scholar
  122. Kuiper I, Lagendijk EL, Pickjord R, Derrick JP et al (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113PubMedCrossRefGoogle Scholar
  123. Lajoie CA, Layton AC, Sayler GS (1994) Cometabolic oxidation of polychlorinated biphenyls in soil with surfactant- based field application vector. Appl Environ Microbiol 60:2826–2833PubMedPubMedCentralGoogle Scholar
  124. Lee G, Na J (2013) Future of microbial polyesters. Microb Cell Fact 12:54PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lee KM, Hwang SH, Ha SD, Jang JH, Lim DJ, Kong JY (2004) Rhamnolipid production in batch and fed batch fermentation using P. aeruginosa BYK-2 kCTC 18012P. Biotechnol Bioprocess Eng 9:267–273CrossRefGoogle Scholar
  126. Lee SY, Lee DY, Kim TY (2005) Systems biotechnology for strain improvement. Trends Biotechnol 23:349–358PubMedCrossRefGoogle Scholar
  127. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012a) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546PubMedCrossRefGoogle Scholar
  128. Lee SY, Mattanovich D, Villaverde A (2012b) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microbiol Cell Fact 11:156CrossRefGoogle Scholar
  129. Lehrbach PR, Zeyer J, Reineke W, Knackmuss HJ, Timmis KN (1984) Enzyme recruitment in vitro: use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp strain B 13. J Bacteriol 158:1025–1032PubMedPubMedCentralGoogle Scholar
  130. Leisinger T, Margaraff VR (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 4:422–442Google Scholar
  131. Leitermann F, Walter V, Syldatk C, Hausmann R (2010) Rhamnolipids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3037–3051CrossRefGoogle Scholar
  132. Li Q, Yi L, Marek P, Inverson BL (2013a) Commercial proteases: present and future. FEBS Lett 587:1155–1163PubMedCrossRefGoogle Scholar
  133. Li R, Jiang Y, Wang X, Yang J, Gao Y, Zi X, Zhang X, Gao H, Hu N (2013b) Psychrotrophic Pseudomonas mandelii CBS-1 produces high levels of poly-β-hydroxybutyrate. Springerplus 2:335PubMedPubMedCentralCrossRefGoogle Scholar
  134. Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159PubMedCrossRefGoogle Scholar
  135. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17PubMedCrossRefGoogle Scholar
  136. Loeschcke A, Thies S (2015) Pseudomonas putida – a versatile host for production of natural products. Appl Microbiol Biotechnol 99:6197–6214PubMedPubMedCentralCrossRefGoogle Scholar
  137. Loeschcke A, Morkert A, Wilhelm S, Rosenau F, Jerger KE, Drepper T (2013) TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. ACS Synth Biol 2:22–33PubMedCrossRefGoogle Scholar
  138. Loper JE, Hassan KA, Mavrodi DV, Davis EW II, Lim CK et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784PubMedPubMedCentralCrossRefGoogle Scholar
  139. Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Appl Environ Microbiol 63:99–105PubMedPubMedCentralGoogle Scholar
  140. Loper JE, Henkels MD (1999) Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in rhizosphere. Appl Environ Microbiol 65:5357–5363PubMedPubMedCentralGoogle Scholar
  141. Lopez-Lara IM, Geiger O (2010) Formation of fatty acids. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 385–393CrossRefGoogle Scholar
  142. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  143. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedPubMedCentralCrossRefGoogle Scholar
  144. Maalej H, Ayed HB, Ghorbel-Bellaaj O, Nasri M, Hmidet N (2014) Production and biochemical characterization of a high maltotetraose (G4) producing amylase from Pseudomonas stutzeri AS22. BioMed Res Int 2014:1–11CrossRefGoogle Scholar
  145. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedPubMedCentralGoogle Scholar
  146. Magalhaes L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–142CrossRefGoogle Scholar
  147. Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633PubMedCrossRefGoogle Scholar
  148. Makino T, Skretas G, Georgiou G (2011) Strain engineering for improved expression of recombinant proteins in bacteria. Microb Cell Fact 10:32PubMedPubMedCentralCrossRefGoogle Scholar
  149. Mandryk M, Kolomiet EI, Dey ES (2007) Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S1. Pol J Microbiol 56:245–250PubMedGoogle Scholar
  150. Margaritis A, Bassi A (1991) Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol 11:277–295PubMedCrossRefGoogle Scholar
  151. Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177PubMedCrossRefGoogle Scholar
  152. Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA et al (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463PubMedPubMedCentralCrossRefGoogle Scholar
  153. Martinez V, Garcia P, Garcia JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microbiol Biotechnol 4:533–547CrossRefGoogle Scholar
  154. Martinez-Garcia E, de Loranzo V (2012) Transposon-based and plasmid-based genetic tools for editing genomes of Gram-negative bacteria. Methods Mol Biol 813:267–283PubMedCrossRefGoogle Scholar
  155. Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in gram-negative bacteria; analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716PubMedCrossRefGoogle Scholar
  156. Martinez-Garcia E, Nikel PI, Aparicio T, de Lorenzo V (2014) Pseudomonas 2.0: Genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Fact 13:159PubMedPubMedCentralCrossRefGoogle Scholar
  157. Martinez-Toledo A, Rios-Leal E, Vazquez-Duhalt R et al (2006) Role of phenanthrene in rhamnolipid production by P. putida in different media. Environ Technol 27:137–142PubMedCrossRefGoogle Scholar
  158. Matsuda M, Yamori T, Naitoh M, Okutani K (2003) Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Mar Biotechnol 5:13–19PubMedCrossRefGoogle Scholar
  159. Meijnen JP, de Winde JH, Ruijssenaars JH (2011a) Sustainable production of fine chemicals by solvent tolerant Pseudomonas putida S12 using lignocellulosic feed stock. Int Sugar J 113:24–30Google Scholar
  160. Meijnen JP, Verhoef S, Briedjalal AA et al (2011b) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S-12 by using mixed-substrate feeding strategy. Appl Microbiol Biotechnol 90:885–893PubMedPubMedCentralCrossRefGoogle Scholar
  161. Meijnen J-P, de Winde JH, Ruijssenaars HJ (2012) Metabolic and regulatory rearrangements underlying efficient D-Xylose utilization in Engineered Pseudomonas putida S12. J Biol Chem 287:14606–14614PubMedPubMedCentralCrossRefGoogle Scholar
  162. Menn FM, Easter JP, Sayler GS (2010) Genetically engineered microorganisms and bioremediation. In: Rehm HJ, Reed G (eds) Biotechnology, vol IIb, 2nd edn. Wiley India, New DelhiGoogle Scholar
  163. Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389PubMedCrossRefGoogle Scholar
  164. Meyer A, Held M, Schmid A, Kohler HP, Witholt B (2003) Synthesis of 3-tertbutylcatechol by an engineered monooxygenase. Biotechnol Bioeng 81:518–524PubMedCrossRefGoogle Scholar
  165. Momeni B, Chen CC, Hillesland KL, Waite A, Shou W (2011) Using artificial systems to explore the ecology and evolution of symbioses. Cell Mol Life Sci 68:1353–1368PubMedCrossRefGoogle Scholar
  166. Muhammadi, Ahmad N (2007) Genetics of bacterial alginate: Alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 8:191–202Google Scholar
  167. Mukherjee AK (2007) Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations. Lett Appl Microbiol 45:330–335PubMedCrossRefGoogle Scholar
  168. Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515PubMedCrossRefGoogle Scholar
  169. Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK (2012) Antibacterial activity of long-chain fatty alcohols against Mycobacteria. FEMS Microbiol Lett 338:177–183PubMedCrossRefGoogle Scholar
  170. Mukherjee K, Mandal S, Mukhopadhyay B, Mandal NC, Sil AK (2014) Bioactive compound from Pseudomonas synxantha inhibits the growth of Mycobacteria. Microbiol Res 169:794–802PubMedCrossRefGoogle Scholar
  171. Mulet M, Lalucat J, Garcia-Valdes E (2010) DNA sequence based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530PubMedGoogle Scholar
  172. Müller M, Hausmann R (2011) Regulatory and metabolic network of rhamnolipid biosynthesis: traditional and advanced engineering towards biotechnological production. Appl Microbiol Biotechnol 91:251–264PubMedCrossRefGoogle Scholar
  173. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B et al (2012) Rhamnolipids- next generation surfactants? J Biotechnol 162:366–380PubMedCrossRefGoogle Scholar
  174. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198PubMedCrossRefGoogle Scholar
  175. Najafi MF, Deobagkar D, Deobagka D (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechnol 8:197–203CrossRefGoogle Scholar
  176. Needham J, Kelly MT, Ishige M, Andersen RJ (1994) Andrimid and moiramides A-C, metabolites produced in culture by a marine isolate of the bacterium Pseudomonas Xuorescens structure elucidation and biosynthesis. J Org Chem 59:2058–2063CrossRefGoogle Scholar
  177. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808PubMedCrossRefGoogle Scholar
  178. Nguyen TT, Sabatini DA (2009) Formulating alcohol free microemulsions using rhamnolipid biosurfactants and rhamnolipid mixtures. J Surfactants Deterg 12:109–115CrossRefGoogle Scholar
  179. Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868PubMedPubMedCentralCrossRefGoogle Scholar
  180. Nielsen TH, Sørensen D, Tobiasen C, Andersen JB, Christeo-phersen C et al (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423PubMedPubMedCentralCrossRefGoogle Scholar
  181. Nijkamp K, van Luijk N, de Bont JAM, Wery J (2005) The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol 69:170–177PubMedCrossRefGoogle Scholar
  182. Nijkamp K, Westerhof RGM, Ballerstedt H, De Bont JAM, Wery J (2007) Optimization of solvent-tolerant Pseudomonas putida S12 as host for production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624PubMedCrossRefGoogle Scholar
  183. Nikel PI, de Lorenzo V (2013) Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metab Eng 15:98–112PubMedCrossRefGoogle Scholar
  184. Nikel PI, de Almeida A, Melillo EC, Galvagno MA, Pettinari MJ (2006) New recombinant Escherichia coli strain tailored for the production of poly(3-hydroxybutyrate) from agro-industrial by-products. Appl Environ Microbiol 72:3949–3954PubMedPubMedCentralCrossRefGoogle Scholar
  185. Nikel PI, Martinez-Garcia E, de Lorenzo V (2014) Biotechnological domestication of Pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379PubMedCrossRefGoogle Scholar
  186. Nitschke M, Costa S, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600PubMedCrossRefGoogle Scholar
  187. Nitschke M, Costa S, Contiero J (2009) Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl Biochem Biotechnol 49:241–247Google Scholar
  188. Nogales J, Palsson BO, Thiele I (2008) A genome-sea metabolic reconstruction of Pseudomonas putida kT2440: iJN746 as a cell factory. BMC Syst Biol 2:79PubMedPubMedCentralCrossRefGoogle Scholar
  189. O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676PubMedPubMedCentralGoogle Scholar
  190. Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VAP, Papin JA (2008) Genome-scale metabolic network analysis of the opportunistic pathogen pseudomonas aeruginosa PAO1. J Bacteriol 190(8):2790–2803PubMedPubMedCentralCrossRefGoogle Scholar
  191. Ochsner UA, Fiechter A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795PubMedGoogle Scholar
  192. Ochsner UA, Reiser J, Fiechter A, Witholt B (1995) Production of Pseudomonas aeruginosa rhamnolipids biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506PubMedPubMedCentralGoogle Scholar
  193. Olcott MH, Henkels MD, Rosen KL, Walker FL, Sneh B, Loper JE et al (2010) Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5, e12504PubMedPubMedCentralCrossRefGoogle Scholar
  194. Olivera ER, Carnicero D, Jodra R, Minambres B, Garcia B et al (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618PubMedCrossRefGoogle Scholar
  195. Onbasli D, Aslim B (2009) Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J Environ Biol 30:161–163PubMedGoogle Scholar
  196. Otero JM, Nielsen J (2009) Industrial systems biology. Biotechnol Bioeng 105(3):439–460CrossRefGoogle Scholar
  197. Otsu Y, Matsuda Y, Mori H, Ueki H, Nakajima T, Fujiwara K et al (2004) Stable phylloplane colonization by entomopathogenic bacterium Pseudomonas fluorescens KPM-018P and biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Coleoptera:Coccinellidae). Biocontrol Sci Technol 14:427–439CrossRefGoogle Scholar
  198. Ouyang SP, Liu Q, Sun SY, Chen JC, Chen GQ (2007a) Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols. J Biotechnol 132:246–250PubMedCrossRefGoogle Scholar
  199. Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007b) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of pseudomonas putida KT2442. Biomacromolecules 8:2504–2511PubMedCrossRefGoogle Scholar
  200. Pajarron AM, Dekoster CG, Heerma W, Schmidt M, Haverkamp J (1993) Structure identification of natural rhamnolipid mixtures by fast-atom bombardment tandem mass spectroscopy. Glycoconj J 10:219–226CrossRefGoogle Scholar
  201. Palanisamy P, Raicur A (2009) Synthesis spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater Sci Eng C 29:199–204CrossRefGoogle Scholar
  202. Palleroni NJ (1984) Genus I Pseudomonas Migula 1894. In: Kreig NR et al (eds) Bergey’s manual of systematic bacteriology, vol I. Williams & Wilkins, Baltimore, pp 141–199Google Scholar
  203. Palsson BØ (2004) In silico biotechnology. Era of reconstruction and integration. Curr Opin Biotechnol 15:50–51PubMedCrossRefGoogle Scholar
  204. Park SJ, Choi JS, Kim BC, Jho SW, Ryu JW et al (2009) PutidaNET: interactome database service and network analysis of Pseudomonas putida KT2440. BMC Genomics 10:S18PubMedPubMedCentralCrossRefGoogle Scholar
  205. Parry AJ, Parry NJ, Peilow C, Stevenson PS (2013) Combination of rhamnolipids and enzymes for improved cleaning. Patent No. EP2596087A1Google Scholar
  206. Patel RN, Banerjee A, Ko RY, Howell JM, Li WS et al (1994) Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem 20:23–33PubMedGoogle Scholar
  207. Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305PubMedCrossRefGoogle Scholar
  208. Pechy-Tarr M, Bruck D, Maurhofer M, Fischer E, Vogne C et al (2008) Molecular analysis of novel gene cluster encoding an insect toxin in plant associated strain of Pseudomonas fluorescens. Environ Microbiol 10:2368–2386PubMedCrossRefGoogle Scholar
  209. Perfumo M, Banat IM, Cangnella F, Marchant R (2006) Rhamnolipid production by a novel thermotolerant hydrocarbon degrading Pseudomonas aeruginosa AP02-1. J Appl Microbiol 75:132–138Google Scholar
  210. Perlova O, Fu J, Kuhlmann S, Krug D, Stewart AF et al (2006) Reconstruction of myxothiazol biosynthetic gene cluster by Red/ET recombination and heterologous expression in Myxococcus xanthus. Appl Environ Microbiol 72:7485–7494PubMedPubMedCentralCrossRefGoogle Scholar
  211. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270PubMedCrossRefGoogle Scholar
  212. Piljac T, Piljac G (2007) Use of rhamnolipids as cosmetics. Patent No. EP105E462B1Google Scholar
  213. Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C (2012) Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 93:2279–2290PubMedCrossRefGoogle Scholar
  214. Poblete-Castro I, Bingera D, Rodriguesc A, Beckerc J, dos Santosa VAPM, Wittmannc C (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123PubMedCrossRefGoogle Scholar
  215. Poblete-Castro I, Rodriguez A, Lam CMC, Kessler W (2014) Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains. J Microbiol Biotechnol 24:59–69PubMedCrossRefGoogle Scholar
  216. Price ND, Reed JL, Palsson BO (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2:886–897PubMedCrossRefGoogle Scholar
  217. Puchałka J et al (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4, e1000210PubMedPubMedCentralCrossRefGoogle Scholar
  218. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547PubMedCrossRefGoogle Scholar
  219. Rodrigues LR, Teixeria JA (2008) Biomedical and therapeutic applications of Biosurfactants. In: Ramkrishna Sen (ed) Biosurfactants. Landes Bioscience and Springer Science.Google Scholar
  220. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P et al (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718PubMedCrossRefGoogle Scholar
  221. Rahman KSM, Rahman TJ, McClean S, Marchaut R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281PubMedCrossRefGoogle Scholar
  222. Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90:159–168PubMedCrossRefGoogle Scholar
  223. Ramos J, Wasserfallen A, Rose K, Timmis K (1987) Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235(4788):592–596CrossRefGoogle Scholar
  224. Ramos J, Duque E, Huertas M, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916PubMedPubMedCentralGoogle Scholar
  225. Ramos-Gonzalez MI, Ben-Basat A, Campos MJ, Ramos JL (2003) Genetic engineering of a highly solvent-tolerant Pseudomonas putida strain for biotransformation of toluene to p-hydroxybenzoate. Appl Environ Microbiol 69:5120–5127PubMedPubMedCentralCrossRefGoogle Scholar
  226. Ravel J, Cornelis P (2003) Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol 11:195–200PubMedCrossRefGoogle Scholar
  227. Ravindran S, Basu S, Surve P, Lonsane S, Sloka N (2012) Significance of biotransformation in drug discovery and development. J Biotechnol Biomater 13:005–008Google Scholar
  228. Raza ZA, Khalid ZM, Banat IM (2009) Characterization of Rhamnolipids produced by a Pseudomonas aeruginosa mutant grown on waste oil. J Environ Sci Health A Tox Hazd Subst Environ Eng 44:1367–1373CrossRefGoogle Scholar
  229. Reed JL, Patel TR, Chen KH, Joyce AR, Applebee MK et al (2006) System approach to refining genome annotation. Proc Natl Acad Sci USA 103:17480–17484PubMedPubMedCentralCrossRefGoogle Scholar
  230. Rehm BHA (2006) Genetics and biochemistry of polyhydroxyalkanoate granule self assembly: key role of polyester synthases. Biotechnol Lett 28:207–213PubMedCrossRefGoogle Scholar
  231. Rehm BH (2007) Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made bioparticles. Curr Issues Mol Biol 9:41–62PubMedGoogle Scholar
  232. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592PubMedCrossRefGoogle Scholar
  233. Reid AJ (2012) Adapting to domesticity. Nat Rev Microbiol 10:163PubMedCrossRefGoogle Scholar
  234. Reis RS, Pereira AG, Neves BC, Freire DMG (2011) Gene regulation of rhamnolipid production in Pseudomonas aeruginosa – a review. Bioresour Technol 102:6377–6384PubMedCrossRefGoogle Scholar
  235. Reis RS, Pacheco GJ, Pereira AG, Freire DMG (2013) Biosurfactants: production and applications. In Chamy R, Rosenkranz F (Eds) Biodegradation—life of science. Intech Open Access PublicationGoogle Scholar
  236. Remal C, Tobler M, Meyer M, Bigler L, Ebert MO et al (2009) Biosynthesis of proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC Biochem 10:26CrossRefGoogle Scholar
  237. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712PubMedCrossRefGoogle Scholar
  238. Ren Q, de Roo G, Ruth K, Witholt B, Zinn M, Thony-Meyer L (2009) Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biogeosciences 10:916–922Google Scholar
  239. Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tümmler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092PubMedPubMedCentralCrossRefGoogle Scholar
  240. Rimando AM, Duke SO (2006) Natural products for pest management. ACS Symposium Series. American Chemical Society, Washington, DC, pp. 2–21Google Scholar
  241. Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Romas JL, Segura A (2001) Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-TIE. J Bacteriol 183:3967–3973PubMedPubMedCentralCrossRefGoogle Scholar
  242. Rojas A, Duque E, Schmid A, Hurtado A, Ramos JL, Segura A (2004) Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl Environ Microbiol 70:3637–3643PubMedPubMedCentralCrossRefGoogle Scholar
  243. Romanenko LA, Uchino M, Kalinovskaya NI, Mikhailov VV (2008) Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities. Microbiol Res 163:633–644PubMedCrossRefGoogle Scholar
  244. Ruffing A, Chen RR (2006) Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Fact 5:25PubMedPubMedCentralCrossRefGoogle Scholar
  245. Ruffner B, Péchy-Tarr M, Keel C, Maurhofer M (2009) Occurrence and molecular diversity of the Fit insect toxin locus in plant-beneficial pseudomonads. IOBC/WPRS Bull 45:251–254Google Scholar
  246. Ryu HW, Hahn SK, Chang YK, Chang HN (1997) Production of poly(3-hydroxybutyrate) by high cell density fed-batch culture of Alcaligenes eutrophus with phosphate limitation. Biotechnol Bioeng 55:28–32PubMedCrossRefGoogle Scholar
  247. Sabra W, Dietz D, Tjahjasari D, Zeng AP (2010) Biosystems analysis and engineering of Microbial Consortia for Industrial Biotechnology. Eng Life Sci 10:407–421CrossRefGoogle Scholar
  248. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016PubMedPubMedCentralCrossRefGoogle Scholar
  249. Saini HS, Barragan-Huetra BE, Lebron-Paler A, Pemberton JE, Vazquez RR et al (2008) Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J Nat Prod 71:1011–1015PubMedCrossRefGoogle Scholar
  250. Sardessai YN, Bhosle S (2004) Industrial potential of organic solvent tolerant bacteria. Biotechnol Prog 20:655–660PubMedCrossRefGoogle Scholar
  251. Sauer M, Mattananovich D (2012) Construction of microbial cell factories for industrial bioprocesses. J Chem Technol Biotechnol 87:445–450CrossRefGoogle Scholar
  252. Sawant R, Nagendran S (2014) Protease: an enzyme with multiple Industrial Applications. World J Pharm Sci 3:568–579Google Scholar
  253. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268PubMedCrossRefGoogle Scholar
  254. Schmitz S, Nies S, Wierckx N, Blank LM, Rosenbaum MA (2015) Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front Microbiol. 6: article 00284Google Scholar
  255. Schnider-Keel U, Seematter A, Maurhofer M, Blumer C, Duffy B et al (2000) Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the bio-control agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225PubMedPubMedCentralCrossRefGoogle Scholar
  256. Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opin Biotechnol 10:609–615PubMedCrossRefGoogle Scholar
  257. Setoodeh P, Jahanmiri A, Eslamloueyan R, Niazi A et al (2014) Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC9027 rhamnolipids by nonpathogenic cell factory Pseudomonas putida KT2440. Mol Biotechnol 56:175–191PubMedCrossRefGoogle Scholar
  258. Sevastianov VI, Perova NV, Shishatskaya EI et al (2003) Production of purified polyhydroxyalkanoates (PHAs) for application in contact with blood. J Biomater Sci Polym 14:1029–1042CrossRefGoogle Scholar
  259. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662PubMedCrossRefGoogle Scholar
  260. Sharma PK, Fu J, Zhang X, Fristensky B, Sparling R, Levin DB (2014) Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains. AMB Express 4:37–54PubMedPubMedCentralCrossRefGoogle Scholar
  261. Shong J, Jimenez Dias MR, Collins CH (2012) Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol 23:798–802PubMedCrossRefGoogle Scholar
  262. Silva F, Queiroz JA, Domingue FC (2012) Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 30:691–708PubMedCrossRefGoogle Scholar
  263. Silva-Rocha R, Martinez-Garcia E, Calles B, Chavarria M, Arce-Rodriguez A et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675PubMedPubMedCentralCrossRefGoogle Scholar
  264. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146PubMedCrossRefGoogle Scholar
  265. Singh S, Kang SH, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444PubMedCrossRefGoogle Scholar
  266. Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750PubMedCrossRefGoogle Scholar
  267. Stanier RY, Palleroni N, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–171PubMedCrossRefGoogle Scholar
  268. Stephan S, Meinzle E, Wenzel SC, Krug D, Muller R, Wittman C (2006) Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Process Biochem 41:2146–2152CrossRefGoogle Scholar
  269. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964PubMedCrossRefGoogle Scholar
  270. Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556PubMedCrossRefGoogle Scholar
  271. Sueglitz B, Dicosimo R, Fallon RD (1996) Formation of aliphatic ω-cyanocarboxamide(s) from α,ω-dinitrile(s) using bio-catalyst having regioselective nitrile hydratase activity derived from Pseudomonas putida. US Patent US 5728556Google Scholar
  272. Sun J, Tan H (2013) Alginate-based biomaterials for regenerative medicine applications. Materials 6:1285–1309. doi: 10.3390/ma6041285 CrossRefGoogle Scholar
  273. Sugihara A, Ueshima M, Shimada Y, Tsunasawa S, Tominaga Y (1992) Purification and characterization of a novel thermostable lipase from Pseudomonas cepacia. J Biochem 112:598–603PubMedGoogle Scholar
  274. Tanaka T, Yabe T, Teramachi S, Iwata T (2007) Mechanical properties and enzymatic degradation of poly[®-3-hydroxybutyrate] fibers stretched after isothermal crystallization near T-g. Polym Degrad Stab 92:1016–1024CrossRefGoogle Scholar
  275. Tang XY, Wu B, Ying HJ, He BF (2010) Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl Biochem Biotechnol 160:1017–1031PubMedCrossRefGoogle Scholar
  276. Thakur AN, Thakur NL, Indap MM, Pandit RA, Datar VV, Müller WEG (2005) Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar Biotechnol 7:245–252PubMedCrossRefGoogle Scholar
  277. Thanomsub B, Pumeechockchai W, Limtrakul A, Arunrattiyakorn P, Petchleelaha W et al (2006) Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresour Technol 97:2457–2461PubMedCrossRefGoogle Scholar
  278. Timmis KN, Steffan RJ, Unterman R (1994) Designing of microorganisms for treatment of toxic wastes. Annu Rev Microbiol 48:525–557PubMedCrossRefGoogle Scholar
  279. Toyoda H, Hashimoto H, Utsumi R, Kobayashi H, Ouchi S (1988) Detoxification of fusaric acid by fusaric acid resistant Pseudomonas solanacearum and its application to biological control of Fusarium wilt of tomato. Phytopathology 78:1307–1311CrossRefGoogle Scholar
  280. Udaondo Z et al (2012) Analysis of solvent tolerance in Pseudomonas putida DOT-TIE based on its genome sequence and a collection of mutants. FEBS Lett 586:2932–2938PubMedCrossRefGoogle Scholar
  281. Uzair B, Ahmed N, Kousar F, Edwards DH (2006) Isolation and characterization of Pseudomonas strain that inhibit growth of indigenous and clinical isolate. Int J Microbiol 2:1–6Google Scholar
  282. Uzair B, Ahmed N, Ahmad VU, Mohammad FV, Edwards DH (2008) The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol Lett 279:243–250PubMedCrossRefGoogle Scholar
  283. Valappil SP, Misra SK, Boceaccini AR, Roy I (2006) Biomedical applications of polyhydroxy-alkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868PubMedCrossRefGoogle Scholar
  284. Van de Mortel JE, deVos RCH, Dekkers E, Pineda A, Guillod L, Bouwmeeste K et al (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188PubMedPubMedCentralCrossRefGoogle Scholar
  285. van Duuren JB, Brehmer B, Mars AE, Eggink G, Dos Santos VA, Sanders JP (2011) A limited LCA of bio-adipic acid:manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108:1298–1306PubMedCrossRefGoogle Scholar
  286. van Duuren JB, Wijte D, Karge B, dos Santos VA, Yang Y, Mars AE, Eggink G (2012) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog 28:85–92PubMedCrossRefGoogle Scholar
  287. Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483PubMedCrossRefGoogle Scholar
  288. Verhoef S, Ruijssenaars HJ, de Bont JA, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132:49–56PubMedCrossRefGoogle Scholar
  289. Verhoef S, Wierckx N, Westerhof RGM, De Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-Hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75(4):931–936PubMedPubMedCentralCrossRefGoogle Scholar
  290. Verma N, Thakur S, Bhat AK (2012) Microbial lipases: industrial applications and properties (a review). Int Res J Biol Sci 1:88–92Google Scholar
  291. Vermuri GN, Aristidou AA (2005) Metabolic engineering in the omics era: elucidating and modulatory networks. Micobiol Mol Biol Rev 69:197–216CrossRefGoogle Scholar
  292. Wachett LP (2003) Pseudomonas putida – a versatile biocatalyst. Nat Biotechnol 21:136–138CrossRefGoogle Scholar
  293. Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295PubMedCrossRefGoogle Scholar
  294. Walter V, Syldatk C, Hausmann R (2010) Screening aspect for the isolation of biosurfactant producing microorganisms. Adv Expt Med Biol 672:1–13CrossRefGoogle Scholar
  295. Wang F, Lee SY (1997) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63(9):3703–3706PubMedPubMedCentralGoogle Scholar
  296. Wang X, Gong L, Liang S, Han X, Zhu C, Li Y (2005) Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4:433–443CrossRefGoogle Scholar
  297. Wang QH, Fang XD, Bai BJ, Liang XL, Shuler PJ, Goddard WA, Tang YC (2007) Engineering bacteria for production of Rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853PubMedCrossRefGoogle Scholar
  298. Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868PubMedCrossRefGoogle Scholar
  299. Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of poly-hydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507PubMedCrossRefGoogle Scholar
  300. Ward PG, de Roo G, O’Connor KE (2005) Accumulation of polyhydroxyalkanoate from styrene and phenylacetic acid by Pseudomonas putida CA-3. Appl Environ Microbiol 71:2046–52Google Scholar
  301. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27(2):146–154CrossRefGoogle Scholar
  302. Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Muller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356PubMedCrossRefGoogle Scholar
  303. Wery J, Mendes da Silva DI, de Bont JAM (2000) A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Appl Microbiol Biotechnol 54:180–185PubMedCrossRefGoogle Scholar
  304. Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid and surfactin for enhanced biodegradation of diesel contaminated water and soil. J Hazardous Mater 151:155–163CrossRefGoogle Scholar
  305. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefGoogle Scholar
  306. Wierckx NJP, Ballerstedt H, de Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227PubMedPubMedCentralCrossRefGoogle Scholar
  307. Wierckx NJP, Ballerstedt H, de Bont JAM, de Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of phenol-producing Pseudomonas Putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830PubMedPubMedCentralCrossRefGoogle Scholar
  308. Williams P (2007) Quorum sensing, communication and cross kingdom signaling in bacterial. World Microbiol 12:3923–3938CrossRefGoogle Scholar
  309. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in P. aeruginosa a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191PubMedCrossRefGoogle Scholar
  310. Williams SC, Martin DP (2002a) Application of PHA in medicine and pharmacy. In: Doi Y, Steinbuchel A (eds) Biopolymer polyesters, vol III. Weinheim, Wiley VCH, pp 91–127Google Scholar
  311. Williams SF, Martin DP (2002b) In: Doi Y, Steinbuchel A (eds) Applications of PHA in medicine and Pharmacy. Wiley-VCH, Weinhein, pp 99–127Google Scholar
  312. Williams SF, Rizk S, Martin DP (2013) Poly-4-hydroxybutyrate (P4HB): a new a new generation of biosorbable medical devices for tissue repair and regeneration. Biomed Technol 58:1–14CrossRefGoogle Scholar
  313. Wong JW, Watson HA, Bouressa JF, Burns MP, Cawley JJ, Doro AE, Guzek DB, Hintz MA, McCormick EL, Scully DA (2002) Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org Proc Re Devil 6:477–481CrossRefGoogle Scholar
  314. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas (putida (arvilla) mt-2: evidence for new function of the TOL plasmid. J Bacteriol 124:7–13PubMedPubMedCentralGoogle Scholar
  315. Wratten SJ, Wolfe MS, Andersen RJ, Faulkner DJ (1977) Antibiotic metabolites from a marine pseudomonad. Antimicrob Agents Chemother 11:411–414PubMedPubMedCentralCrossRefGoogle Scholar
  316. Wu LP, Cheng ST, Chen GQ, Xu KT (2008) synthesis, characterization and biocompatibility of novel biodegradable poly[((R)-3-hydroxybutyrate)-block-(D, L-lactide)-block-(ε-caprolactone)] triblock copolymer. Polym Int 57:939–949CrossRefGoogle Scholar
  317. Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial polymers- polyhydroxyalkanoates. Artif Cell Blood Substit Biotechnol 37:1–12CrossRefGoogle Scholar
  318. Yang H, Sun M, Zhou P, Pan L, Wu C (2010) Silk fibroin modify the atmospheric low temperature plasma-treated poly (3-hydroxybutyrate -co-3-hydroxyhexanoate) film for the application of cardiovascular tissue repair. J Biomed Sci Eng 3:1146–1155CrossRefGoogle Scholar
  319. Yao YC, Zhan XY, Zou XH, Wang ZH et al (2008) A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 29:4823–4830PubMedCrossRefGoogle Scholar
  320. Yuste L, Hervas AB, Canosa I, Tobes R, Jimenej JI et al (2006) Growth phase -dependent expression of Pseudomonas putida KT2440 transcriptional machinery analysed with genome-wide DNA microarray. Environ Microbiol 8:165–177PubMedCrossRefGoogle Scholar
  321. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150PubMedCrossRefGoogle Scholar
  322. Zhang XJ, Lou RC, Wang Z, Deng Y, Chen GQ (2009) Applications of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules 10:707–711PubMedCrossRefGoogle Scholar
  323. Zhao J, Wu Y, Alfred AT, Xin X, Yan S (2013) Chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa M14808. J Chem Pharm Res 5:177–182Google Scholar
  324. Zhou S, Catherine C, Rathnasingh C, Somasundar A, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol Bioeng 110:3177–3187PubMedCrossRefGoogle Scholar
  325. Zhu K, Rock CO (2008) RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the betahydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MicrobiologyPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations