Advertisement

Virtual Reference Feedback Tuning of MIMO Data-Driven Model-Free Adaptive Control Algorithms

  • Raul-Cristian RomanEmail author
  • Mircea-Bogdan Radac
  • Radu-Emil Precup
  • Emil M. Petriu
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 470)

Abstract

This paper proposes a new tuning approach by which all Model-Free Adaptive Control (MFAC) algorithm parameters are computed using a nonlinear Virtual Reference Feedback Tuning (VRFT) algorithm. This new mixed data-driven control approach, which results in a mixed data-driven tuning algorithm, is advantageous as it offers a systematic way to tune the parameters of MFAC algorithms by VRFT using only the input/output data of the process. The proposed approach is validated by a set of MIMO experiments conducted on a nonlinear twin rotor aerodynamic system laboratory of equipment position control system. The mixed VRFT-MFAC algorithm is compared with a classical MFAC algorithm whose initial parameter values are optimally tuned.

Keywords

Model-Free Adaptive Control Optimization Twin Rotor Aerodynamic System Virtual Reference Feedback Tuning 

Notes

Acknowledgements

This work was supported by grants of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project numbers PN-II-RU-TE-2014-4-0207 and PN-II-ID-PCE-2011-3-0109, and by a grant from the NSERC of Canada.

References

  1. 1.
    Campi, M.C., Lecchini, A., Savaresi, S.M.: Virtual reference feedback tuning: a direct method for the design of feedback controllers. Automatica 38(8), 1337–1346 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Formentin, S., Savaresi, S.M., Del Re, L.: Non-iterative direct data-driven tuning for multivariable systems: theory and application. IET Control Theor. Appl. 6(9), 1250–1257 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Campi, M.C., Savaresi, S.M.: Virtual reference feedback tuning for non-linear systems. In: IEEE Conference on Decision and Control and European Control Conference, pp. 6608–6613. Seville, Spain (2005)Google Scholar
  4. 4.
    Campi, M.C., Savaresi, S.M.: Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach. IEEE Trans. Autom. Control 51(1), 14–27 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hou, Z., Jin, S.: Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems. IEEE Trans. Neural Netw. 22(12), 2173–2188 (2011)CrossRefGoogle Scholar
  6. 6.
    Hou, Z., Jin, S.: A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans. Control Syst. Technol. 19(6), 1549–1558 (2011)CrossRefGoogle Scholar
  7. 7.
    Roman, R.-C., Radac, M.-B., Precup, R.-E., Petriu, E.M.: Data-driven model-free adaptive control tuned by virtual reference feedback tuning. Acta Polyt. Hung. 13(1), 83–96 (2016)Google Scholar
  8. 8.
    Two Rotor Aerodynamical System, User’s Manual. Inteco Ltd., Krakow, Poland (2007)Google Scholar
  9. 9.
    Roman, R.-C., Radac, M.-B., Precup, R.-E., Petriu, E.M.: Data-driven optimal model-free control of twin rotor aerodynamic systems. In: IEEE International Conference on Industrial Technology, pp. 161–166. Seville, Spain (2015)Google Scholar
  10. 10.
    Yan, P., Liu, D., Wang, D., Ma, H.: Data-driven controller design for general MIMO nonlinear systems via virtual reference feedback tuning and neural networks. Neurocomputing 171, 815–825 (2016)CrossRefGoogle Scholar
  11. 11.
    Esparza, A., Sala, A., Albertos, P.: Neural networks in virtual reference tuning. Eng. Appl. Artif. Intell. 24(6), 983–995 (2011)CrossRefGoogle Scholar
  12. 12.
    Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Gravitational search algorithms in fuzzy control systems tuning. In: 18th IFAC World Congress, pp. 13624–13629. Milano, Italy (2011)Google Scholar
  13. 13.
    David, R.-C., Precup, R.-E., Petriu, E.M., Radac, M.-B., Preitl, S.: Gravitational search algorithm-based design of fuzzy control systems with a reduced parametric sensitivity. Inf. Sci. 247, 154–173 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Fuzzy logic-based adaptive gravitational search algorithm for optimal tuning of fuzzy controlled servo systems. IET Control Theor. Appl. 7(1), 99–107 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Novel adaptive charged system search algorithm for optimal tuning of fuzzy controllers. Expert Syst. Appl. 41(4), 1168–1175 (2014)CrossRefGoogle Scholar
  16. 16.
    Radac, M.-B., Roman, R.-C., Precup, R.-E., Petriu, E.M.: Data-driven model-free control of twin rotor aerodynamic systems: algorithms and experiments. In: IEEE Multi-Conference on Systems and Control, pp. 1889–1894. Antibes, France (2014)Google Scholar
  17. 17.
    Roman, R.-C., Radac, M.-B., Precup, R.-E.: Data-driven model-free adaptive control of twin rotor aerodynamic systems. In: IEEE 9th International Symposium on Applied Computational Intelligence and Informatics, pp. 25–30. Timisoara, Romania (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Raul-Cristian Roman
    • 1
    Email author
  • Mircea-Bogdan Radac
    • 1
  • Radu-Emil Precup
    • 1
  • Emil M. Petriu
    • 2
  1. 1.Politehnica University of TimisoaraTimisoaraRomania
  2. 2.University of OttawaOttawaCanada

Personalised recommendations