Advertisement

Fault Analysis of Three-Level NPC Inverters in Synchronous Reluctance Motor Drives

  • Diogo M. B. Matos
  • Jorge O. EstimaEmail author
  • Antonio J. Marques Cardoso
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 470)

Abstract

A performance analysis of a synchronous reluctance motor (SynRM) drive, operating under different fault conditions, with a three-level NPC inverter, controlled by a seven-segment Space Vector Modulation (SVM) technique, is presented in this paper. Considering the voltage source inverter, open-circuit faults of different types are introduced and their effects are studied regarding the SynRM and the inverter performance evaluation. The healthy and faulty operating conditions comparison will take into account the evaluation of some variables, such as the motor power factor, electromagnetic torque, efficiency, total waveform distortion values, currents RMS values, and total waveform oscillation values, obtained from simulation results.

Keywords

Open-circuit faults Synchronous reluctance motor Inverter failures Three-level NPC inverter failures 

Notes

Acknowledgment

The authors acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) under grant no. SFRH/BD/102345/2014 and grant no. SFRH/BPD/87135/2012.

References

  1. 1.
    Lipo, T.A.: Synchronous reluctance machines – a viable alternative for AC drives? Electr. Mach. Power Syst. 19, 659–671 (1991)CrossRefGoogle Scholar
  2. 2.
    Yahia, K., Matos, D.M.B., Estima, J.O., Cardoso, A.J.M.: Modeling synchronous reluctance motors including saturation, iron losses and mechanical losses. In: Proceedings of the 22nd International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, pp. 595–600 (2014)Google Scholar
  3. 3.
    Matos, D.M.B., Estima, J.O., Yahia, K., Cardoso, A.J.M.: Modeling and implementation of MTPA control strategy for SynRM variable speed drives. In: International Review of Electrical Engineering, vol.9, no. 6 (2014)Google Scholar
  4. 4.
    Matos, D.M.B. Estima, J.O., Cardoso, A.J.M.: Performance evaluation of synchronous reluctance motor drives under inverter fault conditions. In: 10th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. Guarda (2015)Google Scholar
  5. 5.
    Franquelo, L.G., Rodríguez, J., León, J.I., Kouro, S., Portillo, R., Prats, M.M.: The age of multilevel converters arrives. IEEE Industr. Electron. Mag. 2(2), 28–39 (2008)CrossRefGoogle Scholar
  6. 6.
    Rodriguez, J., Bernet, S., Steimer, P.K., Lizama, I.E.: A survey on neutral-point-clamped inverters. IEEE Trans. Industr. Electron. 57(7), 2219–2230 (2010)CrossRefGoogle Scholar
  7. 7.
    Abu-Rub, H., Holtz, J., Rodriguez, J., Baoming, G.: Medium voltage multilevel converters – State of the art, challenges and requirements in industrial applications. IEEE Trans. Industr. Electron. 57(8), 2581–2596 (2010)CrossRefGoogle Scholar
  8. 8.
    Teichmann, R., Malinowski, M., Bernet, S.: Evaluation of three-level rectifiers for low-voltage utility applications. IEEE Trans. Industr. Electron. 52(2), 471–481 (2005)CrossRefGoogle Scholar
  9. 9.
    Teichmann, R., Bernet, S.: A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications. IEEE Trans. Industr. Appl. 42(3), 855–865 (2005)CrossRefGoogle Scholar
  10. 10.
    Lin, L., Zou, Y., Wang, Z., Jin, H.: Modeling and control of neutral point voltage balancing problem in three-level NPC PWM inverters. In: Proceedings of 36th IEEE PESC, Recife, Brazil, pp. 861–866 (2005)Google Scholar
  11. 11.
    Holtz, J., Oikonomou, N.: Neutral point potential balancing algorithm at low modulation index for three-level inverter medium voltage drives. IEEE Trans. Industr. Appl. 43(3), 761–768 (2007)CrossRefGoogle Scholar
  12. 12.
    Park, J.-J., Kim, T.-J., Hyun, D.-S.: Study of neutral point potential variation for three-level NPC inverter under fault condition. In: Proceedings of the 34th IEEE IECON, pp. 983–988 (2008)Google Scholar
  13. 13.
    Ceballos, S., Pou, J., Robles, E., Gabiola, I., Zaragoza, J., Villate, J.L., Boroyevich, D.: Three-level converter topologies with switch breakdown fault-tolerance capability. IEEE Trans. Industr. Electron. 55(3), 982–995 (2008)CrossRefGoogle Scholar
  14. 14.
    Li, S., Xu, L.: Strategies of fault tolerant operation for three-level PWM inverters. IEEE Trans. Industr. Electron. 21(4), 933–940 (2006)Google Scholar
  15. 15.
    Li, J., Huang, A.Q., Liang, Z., Bhattacharya, S.: Analysis and design of active NPC (ANPC) inverters for fault tolerant operation of high-power electrical drives. IEEE Trans. Industr. Electron. 27, 519–533 (2012)Google Scholar
  16. 16.
    Ceballos, S., Pou, J., Robles, E., Zaragoza, J., Martin, J.L.: Performance evaluation of fault-tolerant neutral-point-clamped converters. IEEE Trans. Industr. Electron. 57(8), 2709–2718 (2010)CrossRefGoogle Scholar
  17. 17.
    Wu, B.: High-Power Converters and AC Drives. IEEE Press/Wiley Interscience, Hoboken (2006)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2016

Authors and Affiliations

  • Diogo M. B. Matos
    • 1
  • Jorge O. Estima
    • 1
    Email author
  • Antonio J. Marques Cardoso
    • 1
  1. 1.CISE – Electromechatronic Systems Research CentreUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations