Advertisement

Compilable Phenotypes: Speeding-Up the Evaluation of Glucose Models in Grammatical Evolution

  • J. Manuel Colmenar
  • J. Ignacio HidalgoEmail author
  • Juan Lanchares
  • Oscar Garnica
  • Jose-L. Risco
  • Iván Contreras
  • Almudena Sánchez
  • J. Manuel Velasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9598)

Abstract

This paper presents a method for accelerating the evaluation of individuals in Grammatical Evolution. The method is applied for identification and modeling problems, where, in order to obtain the fitness value of one individual, we need to compute a mathematical expression for different time events. We propose to evaluate all necessary values of each individual using only one mathematical Java code. For this purpose we take profit of the flexibility of grammars, which allows us to generate Java compilable expressions. We test the methodology with a real problem: modeling glucose level on diabetic patients. Experiments confirms that our approach (compilable phenotypes) can get up to 300x reductions in execution time.

Keywords

Grammatical evolution Model identification Diabetes mellitus 

References

  1. 1.
    Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (2000)zbMATHGoogle Scholar
  2. 2.
    Hidalgo, J.I., Lanchares, J., Ibarra, A., Hermida, R.: A hybrid evolutionary algorithm for multi-FPGA systems design. In: Proceedings of the Euromicro Symposium on Digital System Design, pp. 60–67 (2002)Google Scholar
  3. 3.
    Langdon, W.B.: Graphics processing units and genetic programming: an overview. Soft Comput. 15, 1657–1669 (2011)CrossRefGoogle Scholar
  4. 4.
    Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of GE using GPUs: computational intelligence on consumer games and graphics hardware. In: Companion Proceedings of the 13th GECCO, pp. 431–438 (2011)Google Scholar
  5. 5.
    Hu, T., Harding, S., Banzhaf, W.: Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm. Genet. Program Evolvable Mach. 11(2), 205–225 (2010)CrossRefGoogle Scholar
  6. 6.
    Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo, J.J., Paechter, B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 665–675. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using CUDA. In: Workshop on Parallel Architectures and Bioinspired Algorithms, Raleigh, USA (2009)Google Scholar
  8. 8.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk
  10. 10.
    Breidecker, R.: JEval. Java library for functional expression parsing and evaluation (2007). http://sourceforge.net/projects/jeval/
  11. 11.
    JEXL: Java EXpression Language (2015). http://commons.apache.org/proper/commons-jexl/
  12. 12.
    Adaptive and Bioinspired Systems Group: ABSys JECO (Java Evolutionary COmputation) library (2015). https://github.com/ABSysGroup/jeco
  13. 13.
    O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott, J., Brabazon, A.: GEVA - Grammatical Evolution in Java. Technical report, Natural Computing Research and Applications Group - UCD Complex and Adaptive Systems Laboratory, University College Dublin, Ireland (2008)Google Scholar
  14. 14.
    Hidalgo, J.I., Colmenar, J.M., Risco-Martin, J.L., Cuesta-Infante, A., Maqueda, E., Botella, M., Rubio, J.A.: Modeling glycemia in humans by means of Grammatical Evolution. Appl. Soft Comput. 20, 40–53 (2014)CrossRefGoogle Scholar
  15. 15.
    AIDA: AIDA diabetic software simulator (2011). http://www.2aida.org/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Manuel Colmenar
    • 1
    • 2
  • J. Ignacio Hidalgo
    • 1
    Email author
  • Juan Lanchares
    • 1
  • Oscar Garnica
    • 1
  • Jose-L. Risco
    • 1
  • Iván Contreras
    • 1
  • Almudena Sánchez
    • 1
  • J. Manuel Velasco
    • 1
  1. 1.Adaptive and Bioinspired Systems Research GroupUniversidad Complutense de MadridMadridSpain
  2. 2.Universidad Rey Juan CarlosMadridSpain

Personalised recommendations