Addressing High Dimensional Multi-objective Optimization Problems by Coevolutionary Islands with Overlapping Search Spaces

  • Pablo García-SánchezEmail author
  • Julio Ortega
  • Jesús González
  • Pedro A. Castillo
  • Juan J. Merelo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9598)


Large-scale multi-objective optimization problems with many decision variables have recently attracted the attention of researchers as many data mining applications involving high dimensional patterns can be leveraged using them. Current parallel and distributed computer architectures can provide the required computing capabilities to cope with these problems once efficient procedures are available. In this paper we propose a cooperative coevolutionary island-model procedure based on the parallel execution of sub-populations, whose individuals explore different domains of the decision variables space. More specifically, the individuals belonging to the same sub-population (island) explore the same subset of decision variables. Two alternatives to distribute the decision variables among the different sub-populations have been considered and compared here. In the first approach, individuals in different sub-population explore disjoint subsets of decision variables (i.e. the chromosomes are divided into disjoints subsets). Otherwise, in the second alternative there are some overlapping among the variables explored by individuals in different sub-populations. The analysis of the obtained experimental results, by using different metrics, shows that coevolutionary approaches provide statistically significant improvements with respect to the base algorithm, being the relation of the number of islands (subpopulations) to the length of the chromosome (number of decision variables) a relevant factor to determine the most efficient alternative to distribute the decision variables.


Multi-objective algorithms NSGA-II Island model Distributed evolutionary algorithms 



This work has been supported in part by projects TIN2014-56494-C4-3-P and TIN2012-32039 (Spanish Ministry of Economy and Competitivity), V17-2015 of the Microprojects program 2015 from CEI BioTIC Granada, PROY-PP2015-06 (Plan Propio 2015 UGR), PETRA (SPIP2014-01437, funded by Dirección General de Tráfico), and MSTR (PRY142/14, Fundación Pública Andaluza Centro de Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación).


  1. 1.
    Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)CrossRefzbMATHGoogle Scholar
  2. 2.
    Luna, F., Alba, E.: Parallel multiobjective evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1017–1031. Springer, Berlin (2015)CrossRefGoogle Scholar
  3. 3.
    Branke, J., Schmeck, H., Deb, K., Maheshwar, R.S.: Parallelizing multi-objective evolutionary algorithms: cone separation. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2004, pp. 1952–1957, Portland, OR, USA. IEEE, 19–23 June 2004Google Scholar
  4. 4.
    Folino, G., Pizzuti, C., Spezzano, G.: A scalable cellular implementation of parallel genetic programming. IEEE Trans. Evol. Comput. 7(1), 37–53 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)CrossRefGoogle Scholar
  6. 6.
    Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., Coello, C.A.C.: A survey of multiobjective evolutionary algorithms for data mining: part I. IEEE Trans. Evol. Comput. 18(1), 4–19 (2014)CrossRefGoogle Scholar
  7. 7.
    Gong, Y., Chen, W., Zhan, Z., Zhang, J., Li, Y., Zhang, Q., Li, J.: Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl. Soft Comput. 34, 286–300 (2015)CrossRefGoogle Scholar
  8. 8.
    Kimovski, D., Ortega, J., Ortiz, A., Baños, R.: Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection. Expert Syst. Appl. 42(9), 4239–4252 (2015)CrossRefGoogle Scholar
  9. 9.
    Dorronsoro, B., Danoy, G., Nebro, A.J., Bouvry, P.: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution. Comput. OR 40(6), 1552–1563 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimisation: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Nebro, A.J., Durillo, J.J.: A study of the parallelization of the multi-objective metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 303–317. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Hiroyasu, T., Yoshii, K., Miki, M.: Discussion of parallel model of multi-objective genetic algorithms on heterogeneous computational resources. In: Lipson, H. (ed.) Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, p. 904, London, England, UK. ACM, 7–11 July 2007Google Scholar
  14. 14.
    Deb, K., Zope, P., Jain, S.: Distributed computing of pareto-optimal solutions with evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 534–549. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Xiao, N., Armstrong, M.P.: A specialized island model and its application in multi-objective. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1530–1540. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Zhi-xin, W., Ju, G.: A parallel genetic algorithm in multi-objective optimization. In: Control and Decision Conference, CCDC 2009, pp. 3497–3501, Chinese (2009)Google Scholar
  17. 17.
    Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a new migration operator and its performance. In: Blum, C., Alba, E. (eds.) Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 1173–1180, Amsterdam, The Netherlands. ACM, 6–10 July 2013Google Scholar
  18. 18.
    Cheng, R., Jin, Y., Narukawa, K.: Adaptive reference vector generation for inverse model based evolutionary multiobjective optimization with degenerate and disconnected pareto fronts. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 127–140. Springer, Heidelberg (2015)Google Scholar
  19. 19.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  20. 20.
    Luke, S., et al.: ECJ: a Java-based Evolutionary Computation and Genetic Programming Research System (2009).

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo García-Sánchez
    • 1
    Email author
  • Julio Ortega
    • 1
  • Jesús González
    • 1
  • Pedro A. Castillo
    • 1
  • Juan J. Merelo
    • 1
  1. 1.Department of Computer Architecture and TechnologyUniversity of GranadaGranadaSpain

Personalised recommendations