On the Closest Averaged Hausdorff Archive for a Circularly Convex Pareto Front

  • Günter RudolphEmail author
  • Oliver Schütze
  • Heike Trautmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9598)


The averaged Hausdorff distance has been proposed as an indicator for assessing the quality of finitely sized approximations of the Pareto front of a multiobjective problem. Since many set-based, iterative optimization algorithms store their currently best approximation in an internal archive these approximations are also termed archives. In case of two objectives and continuous variables it is known that the best approximations in terms of averaged Hausdorff distance are subsets of the Pareto front if it is concave. If it is linear or circularly concave the points of the best approximation are equally spaced.

Here, it is proven that the optimal averaged Hausdorff approximation and the Pareto front have an empty intersection if the Pareto front is circularly convex. But the points of the best approximation are equally spaced and they rapidly approach the Pareto front for increasing size of the approximation.


Multi-objective optimization Averaged hausdorff distance Convex front Optimal archives 



Support from CONACYT project no. 207403 and DAAD project no. 57065955 is gratefully acknowledged. Additionally, Heike Trautmann acknowledges support by the European Center of Information Systems (ERCIS).


  1. 1.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio, May 1999Google Scholar
  3. 3.
    Bosman, P., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 7(2), 174–188 (2003)CrossRefGoogle Scholar
  4. 4.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)CrossRefGoogle Scholar
  5. 5.
    Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-dominated set. IMM Technical Report IMM-REP-1998-7, Institute of Mathematical Modeling, Technical University of Denmark, Lyngby, March 1998Google Scholar
  6. 6.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gerstl, K., Rudolph, G., Schütze, O., Trautmann, H.: Finding evenly spaced fronts for multiobjective control via averaging Hausdorff-measure. In: Proceedings of 8th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6. IEEE Press (2011)Google Scholar
  8. 8.
    Brockhoff, D., Wagner, T., Trautmann, H.: R2 indicator based multiobjective search. Evol. Comput. 23(3), 369–395 (2015)CrossRefGoogle Scholar
  9. 9.
    Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: Optimal \(\mu \)-distributions and the choice of the reference point. In: Proceedings of the 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms FOGA 2009, pp. 87–102. ACM, New York (2009)Google Scholar
  10. 10.
    Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)CrossRefGoogle Scholar
  11. 11.
    Rudolph, G., Schütze, O., Grimme, C., Domínguez-Medina, C., Trautmann, H.: Optimal averaged Hausdorff archives for bi-objective problems: theoretical and numerical results. Comput. Optim. Appl. (2015). doi: 10.1007/s10589-015-9815-8, online 23 December 2015
  12. 12.
    Rudolph, G., Schütze, O., Grimme, C., Trautmann, H.: An aspiration set EMOA based on averaged Hausdorff distances. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 8. LNCS, vol. 8246, pp. 153–156. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Formulas. National Bureau of Standards, Washington (DC) (1972). 10th printingzbMATHGoogle Scholar
  14. 14.
    Deza, M., Deza, E.: Encyclopedia of Distances, 3rd edn. Springer, Heidelberg (2014)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Günter Rudolph
    • 1
    Email author
  • Oliver Schütze
    • 2
  • Heike Trautmann
    • 3
  1. 1.Department of Computer ScienceTU Dortmund UniversityDortmundGermany
  2. 2.Department of Computer ScienceCINVESTAVMexico CityMexico
  3. 3.Department of Information SystemsUniversity of MünsterMünsterGermany

Personalised recommendations