Benchmarking Dynamic Three-Dimensional Bin Packing Problems Using Discrete-Event Simulation

  • Ran WangEmail author
  • Trung Thanh Nguyen
  • Shayan Kavakeb
  • Zaili Yang
  • Changhe Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9598)


In this paper a framework is developed to generate benchmark problems for dynamic three-dimensional (3D) bin packing problems (BPPs). This framework is able to generate benchmark problems for different variants of BPPs by taking into account potential uncertainty in real-world BPPs, which are uncertainties in dimensions, costs, weights of upcoming items. This paper has three main contributions. First, a benchmark generator framework is developed for the first time using an open source discrete-event simulation platform. This framework generates benchmark problems for BPPs by reproducing uncertainty in real-world BPPs. Second, this framework can be integrated with any dynamic BPP algorithm so that the optimisation algorithm can be run alongside the simulation to solve dynamic BPPs. Third, various performance measures from the literature are included in the framework to evaluate the optimisation algorithms from different perspectives. Thanks to the 3D visualisation feature of this framework, the optimisation results can also be observed visually. Finally, empirical experiments on a real-world BPP are conducted to verify these contributions.


Benchmarking Bin packing problem Dynamic optimisation Simulation 



This work was supported by a Dean’s scholarship from the Faculty of Engineering and Technology, Liverpool John Moores University, a British Council UK-ASEAN Knowledge Partnership grant and a British Council Newton Institutional Links grant.


  1. 1.
    Crainic, T.G., Perboli, G., Tadei, R.: Ts 2 pack: A two-level tabu search for the three-dimensional bin packing problem. Eur. J. Oper. Res. 195(3), 744–760 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Feng, X.: Hybrid genetic algorithms for the three-dimensional multiple container packing problem. Flex. Serv. Manufact. J. 27(2), 451–477 (2013)Google Scholar
  3. 3.
    Martello, S.: Algorithm 864: general and robot-packable variants of the three-dimensional bin packing problem. ACM Trans. Math. Softw. 33(1), 1–12 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    de Almeida, A.: A particular approach for the three-dimensional packing problem with additional constraints. Comput. Oper. Res. 37, 1968–1976 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Alvarez-Valdes, R.: A grasp/path relinking algorithm for two- and three-dimensional multiple bin-size bin packing problems. Comput. Oper. Res. 40, 3081–3090 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Che, C.H.: The multiple container loading cost minimization problem. Eur. J. Oper. Res. 214, 501–511 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Eley, M.: A bottleneck assignment approach to the multiple container loading problem. OR Spectr. 25, 54–60 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Tian, T., Zhu, W., Lim, A., Wei, L.: The multiple container loading problem with preference. Eur. J. Oper. Res. 248, 84–94 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lim, A.: The single container loading problem with axle weight constraints. Int. J. Prod. Econ. 144(1), 358–369 (2013)CrossRefGoogle Scholar
  10. 10.
    Liu, J.: A novel hybrid tabu search approach to container loading. Comput. Oper. Res. 38(4), 797–807 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Junqueira, L.: Three-dimensional container loading models with cargo stability and load bearing constraints. Comput. Oper. Res. 39, 74–85 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Costa, M.G., Captivo, M.E.: Weight distribution in container loading: a case study. Int. Trans. Oper. Res. (2014)Google Scholar
  13. 13.
    Ceschia, S., Schaerf, A.: Local search for a multi-drop multi-container loading problem. J. Heuristics 19(2), 275–294 (2013)CrossRefGoogle Scholar
  14. 14.
    Bortfeldt, W.: Constraints in container loading - a state-of-the-art review. Eur. J. Oper. Res. 229, 1–20 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)CrossRefGoogle Scholar
  16. 16.
    Nguyen, T.T., Yao, X.: Continuous dynamic constrained optimization - the challenges. IEEE Trans. Evol. Comput. 16(6), 769–786 (2012)CrossRefGoogle Scholar
  17. 17.
    Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Raidl, G.R., et al. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Richter, H.: Memory Design for Constrained Dynamic Optimization Problems. In: Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Weicker, K., Weicker, N.: Dynamic rotation and partial visibility. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 1125–1131 (2000)Google Scholar
  20. 20.
    Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Nguyen, T.T., Yao, X.: Benchmarking and solving dynamic constrained problems. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 690–697. IEEE (2009)Google Scholar
  22. 22.
    Nguyen, T.T.: Continuous dynamic optimisation using evolutionary algorithms. PhD thesis, University of Birmingham (2011)Google Scholar
  23. 23.
    Nguyen, T.T., Yao, X.: Dynamic time-linkage evolutionary optimization: definitions and potential solutions. In: Alba, E., Nakib, A., Siarry, P. (eds.) Metaheuristics for Dynamic Optimization. SCI, vol. 433, pp. 379–405. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Kavakeb, S., Nguyen, T.T., Yang, Z., Jenkinson, I.: Evolutionary fleet sizing in static and uncertain environments with shuttle transportation tasks - the case studies of container terminals. IEEE Computational Intelligence Magazine (in press, 2016)Google Scholar
  25. 25.
    Peng, J., Zhang, B.: Bin packing problem with uncertain volumes and capacities (2012)Google Scholar
  26. 26.
    Perboli, G., Tadei, R., Baldi, M.M.: The stochastic generalized bin packing problem. Discrete Appl. Math. 160(7), 1291–1297 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Crainic, T.G.: Bin packing problems with uncertainty on item characteristics: an application to capacity planning in logistics. Soc. Behav. Sci. 111, 654–662 (2014)CrossRefGoogle Scholar
  28. 28.
    Lim, A., Zhang, X.: The container loading problem. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 913–917. ACM (2005)Google Scholar
  29. 29.
    Zhu, W., Lim, A.: A new iterative-doubling greedy-lookahead algorithm for the single container loading problem. Eur. J. Oper. Res. 222(3), 408–417 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jiang, J., Cao, L.: A hybrid simulated annealing algorithm for three-dimensional multi-bin packing problems. In: 2012 International Conference on Systems and Informatics (ICSAI), pp. 1078–1082. IEEE (2012)Google Scholar
  31. 31.
    Egeblad, J., Pisinger, D.: Heuristic approaches for the two-and three-dimensional knapsack packing problem. Comput. Oper. Res. 36(4), 1026–1049 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Burcea, M., Wong, P.W.H., Yung, F.C.C.: Online multi-dimensional dynamic bin packing of unit-fraction items. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 85–96. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Epstein, L., Levy, M.: Dynamic multi-dimensional bin packing. J. Discrete Algor. 8(4), 356–372 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wong, P.W.H., Yung, F.C.C.: Competitive multi-dimensional dynamic bin packing via l-shape bin packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 242–254. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  35. 35.
    Lodi, A., Martello, S., Vigo, D.: Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS J. Comput. 11(4), 345–357 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ran Wang
    • 1
    Email author
  • Trung Thanh Nguyen
    • 1
  • Shayan Kavakeb
    • 1
  • Zaili Yang
    • 1
  • Changhe Li
    • 2
  1. 1.Liverpool Logistics Offshore and Marine Research Institute (LOOM), School of Engineering, Technology and Maritime OperationsLiverpool John Moores UniversityLiverpoolUK
  2. 2.School of Computer ScienceChina University of GeosciencesWuhanChina

Personalised recommendations