Animating Typescript Using Aesthetically Evolved Images

  • Ashley Mills
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9596)


The genotypic functions from apriori aesthetically evolved images are mutated progressively and their phenotypes sequenced temporally to produce animated versions. The animated versions are mapped onto typeface and combined spatially to produce animated typescript. The output is then discussed with reference to computer aided design and machine learning.


Aesthetic evolution animated Animated typeface Typescript 


  1. 1.
    Sims, K.: Artificial evolution for computer graphics. Comput. Graph. 25(4), 319–328 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)zbMATHGoogle Scholar
  3. 3.
    Machado, P., Cardoso, A.: NEvAr - the assessment of an evolutionary art tool. In: Proceedings of the AISB 2000 Symposium on Creative and Cultural Aspects and Applications of AI and Cognitive Science, Birmingham, UK (2000)Google Scholar
  4. 4.
    Rooke, S.: Eons of Genetically Evolved Algorithmic Images. Morgan Kaufmann Publishers Inc., San Francisco (2002)CrossRefGoogle Scholar
  5. 5.
    McCormack, J.: Aesthetic evolution of l-systems revisited. In: EvoWorkshops, pp. 477–488 (2004)Google Scholar
  6. 6.
    Mills, A.: Evolving aesthetic images. MSc Mini Project Thesis (2005).
  7. 7.
    Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: evolutionary type design. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 136–147. Springer, Heidelberg (2015)Google Scholar
  8. 8.
  9. 9.
    Merritt, L., Vanam, R.: x264: A high performance h. 264/AVC encoder (2006).
  10. 10.
    Noé, A.: Matroska file format (2009).
  11. 11.
    Multimedia examples of the artifacts described in this paper.
  12. 12.
    Nikolov, N.: Organo font landing page.
  13. 13.
    Cover, T.: Geometrical and statistical properties of systems of linear in equalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3(EC–14), 326–334 (1965)CrossRefzbMATHGoogle Scholar
  14. 14.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  15. 15.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of ComputingThe University of KentCanterburyUK

Personalised recommendations