Evolving Atomic Aesthetics and Dynamics

  • Edward Davies
  • Phillip Tew
  • David Glowacki
  • Jim Smith
  • Thomas MitchellEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9596)


The depiction of atoms and molecules in scientific literature owes as much to the creative imagination of scientists as it does to scientific theory and experimentation. danceroom Spectroscopy (dS) is an interactive art/science project that explores this aesthetic dimension of scientific imagery, presenting a rigorous atomic simulation as an immersive and interactive installation. This paper introduces new methods based on interactive evolutionary computation which allow users - both individually and collaboratively - to explore the design space of dS and construct aesthetically engaging visual states. Pilot studies are presented in which the feasibility of this evolutionary approach is discussed and compared with the standard interface to the dS system. Still images of the resulting visual states are also included.


Aesthetic evolution Evolutionary computation Interactive evolutionary computation Molecular aesthetics 


  1. 1.
    Flannery, M.C.: Goethe and the molecular aesthetic. Janus Head 8(1), 273–289 (2005)Google Scholar
  2. 2.
    Voss-Andreae, J.: Quantum sculpture: art inspired by the deeper nature of reality. Leonardo 44(1), 14–20 (2011)CrossRefGoogle Scholar
  3. 3.
    Fernández, J.D., Vico, F.: AI methods in algorithmic composition: a comprehensive survey. J. Artif. Intell. Res. 48(1), 513–582 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution. Natural Computing Series, pp. 3–37. Springer, Berlin Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Glowacki, D.R., O’Connor, M., Calabro, G., Price, J., Tew, P., Mitchell, T.J., Hyde, J., Tew, D., Coughtrie, D.J., McIntosh-Smith, S.: A GPU-accelerated immersive audiovisual framework for interaction with molecular dynamics using consumer depth sensors. Faraday Discuss. 169, 63–87 (2014)CrossRefGoogle Scholar
  6. 6.
    Mitchell, T., Hyde, J., Tew, P., Glowacki, D.: Danceroom Spectroscopy: At the frontiers of physics, performance, interactive art and technology, Leonardo 49(2), (2016)Google Scholar
  7. 7.
    Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  8. 8.
    Secretan, J., Beato, N., Ambrosio, D.B.D., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)CrossRefGoogle Scholar
  9. 9.
    do Nascimento, H.A.D., Eades, P.: User hints: a framework for interactive optimization. Future Gener. Comput. Syst. 21(7), 1177–1191 (2005)CrossRefGoogle Scholar
  10. 10.
    Woolley, B.G., Stanley, K.O.: A novel human-computer collaboration: combining novelty search with interactive evolution. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, NY, USA, 233–240. ACM, New York (2014)Google Scholar
  11. 11.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction. Natural Comput. 1(1), 3–52 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wright, M., Freed, A., Momeni, A.: Opensound control: state of the art 2003. In: Proceedings of the 2003 Conference on New Interfaces for Musical Expression (NIME 2003), pp. 153–160. National University of Singapore, Singapore (2003)Google Scholar
  13. 13.
    Serag, A., Ono, S., Nakayama, S.: Using interactive evolutionary computation to generate creative building designs. Artif. Life Robot. 13(1), 246–250 (2008)CrossRefGoogle Scholar
  14. 14.
    Storer, J.: JUCE (Jules’ Utility Class Extensions) (2015). Accessed 25 October 2015
  15. 15.
    Dawkins, R.: The Blind Watchmaker: Why the Evidence of Evolution Reveals a Universe without Design. WW Norton and Company, New York (1986)Google Scholar
  16. 16.
    Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the ACM CHI 1990 Conference, pp. 249–256. Seattle, WA (1990)Google Scholar
  17. 17.
    Yannakakis, G.N., Liapis, A., Alexopoulos, C.: Mixed-initiative co-creativity. In: Proceedings of the 9th Conference on the Foundations of Digital Games (2014)Google Scholar
  18. 18.
    Boden, M.A.: The Creative Mind: Myths and Mechanisms. Psychology Press, New York (2004)Google Scholar
  19. 19.
    MacCallum, R.M., Mauch, M., Burt, A., Leroi, A.M.: Evolution of music by public choice. Proc. Natl. Acad. Sci. 109(30), 12081–12086 (2012)CrossRefGoogle Scholar
  20. 20.
    Lee, J.Y., Cho, S.B.: Sparse fitness evaluation for reducing user burden in interactive genetic algorithm. In: Fuzzy Systems Conference Proceedings, vol. 2, pp. 998–1003. IEEE (1999)Google Scholar
  21. 21.
    Joyent, Inc. (2015) Node.js homepage. Accessed 10 October 2015
  22. 22.
    Pauplin, O., Caleb-Solly, P., Smith, J.E.: User-centric image segmentation using an interactive parameter adaptation tool. Pattern Recogn. 43(2), 519–529 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Edward Davies
    • 1
  • Phillip Tew
    • 2
  • David Glowacki
    • 3
  • Jim Smith
    • 1
  • Thomas Mitchell
    • 1
    Email author
  1. 1.University of the West of EnglandBristolUK
  2. 2.Interactive ScientificBristolUK
  3. 3.University of BristolBristolUK

Personalised recommendations