MetaCompose: A Compositional Evolutionary Music Composer

  • Marco Scirea
  • Julian Togelius
  • Peter Eklund
  • Sebastian Risi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9596)


This paper describes a compositional, extensible framework for music composition and a user study to systematically evaluate its core components. These components include a graph traversal-based chord sequence generator, a search-based melody generator and a pattern-based accompaniment generator. An important contribution of this paper is the melody generator which uses a novel evolutionary technique combining FI-2POP and multi-objective optimization. A participant-based evaluation overwhelmingly confirms that all current components of the framework combine effectively to create harmonious, pleasant and interesting compositions.


Evolutionary computing Genetic algorithm Music generator 


  1. 1.
    Papadopoulos, G., Wiggins, G.: Ai methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, Edinburgh, UK, pp. 110–117 (1999)Google Scholar
  2. 2.
    Konečni, V.J.: Does music induce emotion? A theoretical and methodological analysis. Psychol. Aesthetics Creativity Arts 2(2), 115 (2008)CrossRefGoogle Scholar
  3. 3.
    Yannakakis, G.N., Togelius, J.: Experience-driven procedural content generation. IEEE Trans. Affect. Comput. 2(3), 147–161 (2011)CrossRefGoogle Scholar
  4. 4.
    Miranda, E.R.: Readings in Music and Artificial Intelligence, vol. 20. Routledge, New York (2013)Google Scholar
  5. 5.
    Wooller, R., Brown, A.R., Miranda, E., Diederich, J., Berry, R.: A framework for comparison of process in algorithmic music systems. In: Generative Arts Practice 2005 – A Creativity & Cognition Symposium (2005)Google Scholar
  6. 6.
    Robertson, J., de Quincey, A., Stapleford, T., Wiggins, G.: Real-time music generation for a virtual environment. In: Proceedings of ECAI-98 Workshop on AI/Alife and Entertainment, Citeseer (1998)Google Scholar
  7. 7.
    Smaill, A., Wiggins, G., Harris, M.: Hierarchical music representation for composition and analysis. Comput. Humanit. 27(1), 7–17 (1993)CrossRefGoogle Scholar
  8. 8.
    Loughran, R., McDermott, J., O’Neill, M.: Tonality driven piano compositions with grammatical evolution. In: IEEE Congress on Evolutionary Computation (CEC), pp. 2168–2175. IEEE (2015)Google Scholar
  9. 9.
    Dahlstedt, P.: Autonomous evolution of complete piano pieces and performances. In: Proceedings of Music AL Workshop, Citeseer (2007)Google Scholar
  10. 10.
    Miranda, E.R., Biles, A.: Evolutionary Computer Music. Springer, London (2007)CrossRefGoogle Scholar
  11. 11.
    Rigopulos, A.P., Egozy, E.B.: Real-time music creation system, US Patent 5,627,335, 6 May 1997Google Scholar
  12. 12.
    Meier, S.K., Briggs, J.L.: System for real-time music composition and synthesis, US Patent 5,496,962, 5 March 1996Google Scholar
  13. 13.
    Livingstone, S.R., Brown, A.R.: Dynamic response: real-time adaptation for music emotion. In: Proceedings of the 2nd Australasian Conference on Interactive Entertainment, pp. 105–111 (2005)Google Scholar
  14. 14.
    Brown, D.: Mezzo: an adaptive, real-time composition program for game soundtracks. In: Proceedings of the AIIDE 2012 Workshop on Musical Metacreation, pp. 68–72 (2012)Google Scholar
  15. 15.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar
  16. 16.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  17. 17.
    Kimbrough, S.O., Koehler, G.J., Lu, M., Wood, D.H.: On a feasible-infeasible two-population (FI-2Pop) genetic algorithm for constrained optimization: distance tracing and no free lunch. Eur. J. Oper. Res. 190(2), 310–327 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Deb, K., Pratap, A., Meyarivan, T.: Constrained test problems for multi-objective evolutionary optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 284–298. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Chafekar, D., Xuan, J., Rasheed, K.: Constrained multi-objective optimization using steady state genetic algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 813–824. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Jimenez, F., Gómez-Skarmeta, A.F., Sánchez, G., Deb, K.: An evolutionary algorithm for constrained multi-objective optimization. In: Proceedings of the Congress on Evolutionary Computation, pp. 1133–1138. IEEE (2002)Google Scholar
  21. 21.
    Isaacs, A., Ray, T., Smith, W.: Blessings of maintaining infeasible solutions for constrained multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 2780–2787. IEEE (2008)Google Scholar
  22. 22.
    Mugglin, S.: Chord charts and maps. Accessed 14 October 2015
  23. 23.
    Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Chichester (2001)zbMATHGoogle Scholar
  24. 24.
    Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. comput. 10(2), 99–127 (2002)CrossRefGoogle Scholar
  25. 25.
    Scirea, M., Nelson, M.J., Togelius, J.: Moody music generator: characterising control parameters using crowdsourcing. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 200–211. Springer, Heidelberg (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marco Scirea
    • 1
  • Julian Togelius
    • 2
  • Peter Eklund
    • 1
  • Sebastian Risi
    • 1
  1. 1.IT University of CopenhagenCopenhagenDenmark
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations