Evolving L-Systems with Musical Notes

  • Ana Rodrigues
  • Ernesto Costa
  • Amílcar Cardoso
  • Penousal Machado
  • Tiago Cruz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9596)

Abstract

Over the years researchers have been interested in devising computational approaches for music and image generation. Some of the approaches rely on generative rewriting systems like L-systems. More recently, some authors questioned the interplay of music and images, that is, how we can use one type to drive the other. In this paper we present a new method for the algorithmic generations of images that are the result of a visual interpretation of an L-system. The main novelty of our approach is based on the fact that the L-system itself is the result of an evolutionary process guided by musical elements. Musical notes are decomposed into elements – pitch, duration and volume in the current implementation – and each of them is mapped into corresponding parameters of the L-system – currently line length, width, color and turning angle. We describe the architecture of our system, based on a multi-agent simulation environment, and show the results of some experiments that provide support to our approach.

Keywords

Evolutionary environment Generative music Interactive genetic algorithms L-systems Sound visualization 

References

  1. 1.
    Lourenço, B.F., Ralha, J.C., Brandao, M.C.: L-systems, scores, and evolutionary techniques. In: Proceedings of the SMC 2009–6th Sound and Music Computing Conference, pp. 113–118 (2009)Google Scholar
  2. 2.
    McCormack, J.: Aesthetic evolution of L-systems revisited. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 477–488. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Moroni, A., Manzolli, J., Von Zuben, F., Gudwin, R.: Vox populi: an interactive evolutionary system for algorithmic music composition. Leonardo Music J. 10, 49–54 (2000)CrossRefGoogle Scholar
  4. 4.
    Měch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 1996, PP. 397–410. ACM, New York (1996)Google Scholar
  5. 5.
    Pestana, P.: Lindenmayer systems and the harmony of fractals. Chaotic Model. Simul. 1(1), 91–99 (2012)MathSciNetGoogle Scholar
  6. 6.
    Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, New York (1990)Google Scholar
  7. 7.
    Soddell, F., Soddell, J.: Microbes and music. In: Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS, vol. 1886. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Kaliakatsos-Papakostas, M.A., Floros, A., Vrahatis, M.N.: Intelligent generation of rhythmic sequences using finite l-systems. In: Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 424–427. IEEE (2012)Google Scholar
  9. 9.
    Nelson, G.L.: Real time transformation of musical material with fractal algorithms. Comput. Math. Appl. 32(1), 109–116 (1996)CrossRefGoogle Scholar
  10. 10.
    Sims, K.: Interactive evolution of dynamical systems. In: Toward a practice of autonomous systems, Proceedings of the First European Conference on Artificial Life, pp. 171–178 (1992)Google Scholar
  11. 11.
    Prusinkiewicz, P.: Score Generation with L-Systems. MPublishing, University of Michigan Library, Ann Arbor (1986)Google Scholar
  12. 12.
    Eiben, A., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series, 2nd edn. Springer, Heidelberg (2015)CrossRefMATHGoogle Scholar
  13. 13.
    van Dillen, O.: Consonance and dissonance (2014). http://www.oscarvandillen.com/outline_of_basic_music_theory/consonance_and_dissonance/. Accessed 01 November 2015
  14. 14.
    Guéret, C., Monmarché, N., Slimane, M.: Ants can play music. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 310–317. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Manousakis, S.: Musical l-systems. Koninklijk Conservatorium. (master thesis), The Hague (2006)Google Scholar
  16. 16.
    Keller, R.M., Morrison, D.R.: A grammatical approach to automatic improvisation. In: Proceedings, Fourth Sound and Music Conference, Lefkada, Greece, July 2007, Mostof the soloists at Birdland had to wait for Parker’s next record in order to and out what to play next. What will they do now (2007)Google Scholar
  17. 17.
    Biles, J.: Genjam: A genetic algorithm for generating jazz solos. In: Proceedings of the International Computer Music Conference, International Computer Music Association, pp. 131–131 (1994)Google Scholar
  18. 18.
    Todd, P., Werner, G.: Frankensteinian methods for evolutionary music composition. In: Griffith, N., Todd, P.M. (eds.) Musical Networks: Parallel Distributed Perception and Performance, pp. 313–339. MIT Press/Bradford Books, Cambridge (1999)Google Scholar
  19. 19.
    Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S., Tuson, A.: Evolutionary methods for musical composition. Dai Research Paper (1998)Google Scholar
  20. 20.
    Sims, K.: Artificial evolution for computer graphics. Comput. Graphics 25(4), 319–328 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)CrossRefGoogle Scholar
  22. 22.
    Shiffman, D.: Learning Processing: A Beginner’s Guide to Programming Images, Animation, and Interaction. Morgan Kaufmann, Amsterdam (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ana Rodrigues
    • 1
  • Ernesto Costa
    • 1
  • Amílcar Cardoso
    • 1
  • Penousal Machado
    • 1
  • Tiago Cruz
    • 1
  1. 1.CISUC, Deparment of Informatics EngineeringUniversity of CoimbraCoimbraPortugal

Personalised recommendations