A Comparison Between Representations for Evolving Images

  • Alessandro Re
  • Mauro Castelli
  • Leonardo Vanneschi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9596)


Evolving images using genetic programming is a complex task and the representation of the solutions has an important impact on the performance of the system. In this paper, we present two novel representations for evolving images with genetic programming. Both these representations are based on the idea of recursively partitioning the space of an image. This idea distinguishes these representations from the ones that are currently most used in the literature. The first representation that we introduce partitions the space using rectangles, while the second one partitions using triangles. These two representations are compared to one of the most well known and frequently used expression-based representations, on five different test cases. The presented results clearly indicate the appropriateness of the proposed representations for evolving images. Also, we give experimental evidence of the fact that the proposed representations have a higher locality compared to the compared expression-based representation.


Genetic programming (GP) Image representation Locality 


  1. 1.
    Draves, S.: The electric sheep screen-saver: a case study in aesthetic evolution. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 458–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Hart, D.A.: Toward greater artistic control for interactive evolution of images and animation. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 527–536. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Romero, J.J., Machado, P. (eds.): The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    World, L.: Aesthetic selection: the evolutionary art of Steven Rooke [about the cover]. Comput. Graph. Appl. 16(1), 4 (1996)CrossRefGoogle Scholar
  5. 5.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  7. 7.
    Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)CrossRefGoogle Scholar
  8. 8.
    Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2–3), 325–354 (1994)CrossRefGoogle Scholar
  9. 9.
    Nguyen, A., Yosinski, J., Clune, J.: Innovation engines: automated creativity and improved stochastic optimization via deep learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (2015)Google Scholar
  10. 10.
    Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: Proceedings of the Fourth International Conference on Computational Creativity, p. 24 (2013)Google Scholar
  11. 11.
    Machado, P., Correia, J., Romero, J.: Expression-based evolution of faces. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 187–198. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Martins, T., Correia, J., Costa, E., Machado, P.: Evotype: evolutionary type design. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 136–147. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Woolley, B.G., Stanley, K.O.: On the deleterious effects of a priori objectives on evolution and representation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 957–964. ACM (2011)Google Scholar
  14. 14.
    Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as a problem difficulty measure in genetic programming. Genet. Program Evolvable Mach. 12(4), 365–401 (2011)CrossRefGoogle Scholar
  15. 15.
    Galvan, E., Trujillo, L., McDermott, J., Kattan, A.: Locality in continuous fitness-valued cases and genetic programming difficulty. In: Schütze, O., Coello Coello, C.A., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge Between Probability, Set Oriented Numerics, and Evolutionary Computation II. AISC, vol. 175, pp. 41–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Stadler, P.F.: Fitness landscapes. In: Biological Evolution and Statistical Physics, pp. 183–204. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Rothlauf, F.: Design of representations and search operators. In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 1061–1083. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, D. (ed.) FOGA-2, pp. 93–108. Morgan Kaufmann, San Francisco (1993)Google Scholar
  19. 19.
    Horn, J., Goldberg, D.E.: Genetic algorithm difficulty and the modality of the fitness landscapes. In: Whitley, D., Vose, M. (eds.) FOGA-3, pp. 243–269. Morgan Kaufmann, San Francisco (1995)Google Scholar
  20. 20.
    Mitchell, M., Forrest, S., Holland, J.: The royal road for genetic algorithms: fitness landscapes and GA performance. In: Varela, F.J., Bourgine, P. (eds.) Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, pp. 245–254. MIT Press, Cambridge (1996)Google Scholar
  21. 21.
    Forrest, S., Mitchell, M.: What makes a problem hard for a genetic algorithm? Some anomalous results and their explanation. Mach. Learn. 13, 285–319 (1993)CrossRefGoogle Scholar
  22. 22.
    Chakraborty, U.K., Janikow, C.Z.: An analysis of gray versus binary encoding in genetic search. Inf. Sci. 156(3–4), 253–269 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)Google Scholar
  24. 24.
    Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, B.: The role of syntactic and semantic locality of crossover in genetic programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 533–542. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R., Phong, D.N.: On the roles of semantic locality of crossover in genetic programming. Inf. Sci. 235, 195–213 (2013). Data-based Control. Decision, Scheduling and Fault DiagnosticsMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    den Heijer, E., Eiben, A.E.: Evolving pop art using scalable vector graphics. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 48–59. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    den Heijer, E., Eiben, A.E.: Evolving art with scalable vector graphics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 427–434. ACM (2011)Google Scholar
  28. 28.
    Baker, E., Seltzer, M.: Evolving line drawings. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 91–100. Morgan Kaufmann Publishers (1994)Google Scholar
  29. 29.
    Unemi, T., Soda, M.: An IEC-based support system for font design. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 968–973. IEEE (2003)Google Scholar
  30. 30.
    Schmitz, M.: genoTyp, an experiment about genetic typography. In: Proceedings of Generative Art 2004 (2004)Google Scholar
  31. 31.
    Pagliarini, L., Parisi, D.: Face-it project. In: Proceedings of XV Italian Congress on Experimental Psychology, pp. 38–41 (1996)Google Scholar
  32. 32.
    Alsing, R.: Genetic programming: Evolution of Mona Lisa (2008).
  33. 33.
    Sims, K.: Artificial evolution for computer graphics, vol. 25(4), pp. 319–328. ACM (1991)Google Scholar
  34. 34.
    Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music. Natural Computing Series, pp. 3–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  35. 35.
    Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program Evolvable Mach. 8(2), 131–162 (2007)CrossRefGoogle Scholar
  36. 36.
    Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J.T., Stanley, K.O.: Picbreeder: a case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)CrossRefGoogle Scholar
  37. 37.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., et al. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Jiarathanakul, P.: Ray marching distance fields in real-time on webgl. Technical report, CiteseerGoogle Scholar
  39. 39.
    Quilez, I.: Modeling with distance functions (2008).
  40. 40.
    Greenfield, G.R., et al.: Mathematical building blocks for evolving expressions. In: Bridges: Mathematical Connections in Art, Music, and Science, pp. 61–70. Tarquin Publications (2000)Google Scholar
  41. 41.
    Ventrella, J.J.: Evolving the mandelbrot set to imitate figurative art. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds.) Design by Evolution: Advances in Evolutionary Design. Natural Computing Series, pp. 145–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  42. 42.
    Lutton, E., Cayla, E., Chapuis, J.: \( ArtiE-fract\): the artist’s viewpoint. In: Cagnoni, S., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 510–521. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  43. 43.
    Schmidhuber, J.: Low-complexity art. Leonardo, 97–103 (1997). JSTORGoogle Scholar
  44. 44.
    Machado, P., Cardoso, A.: All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002)CrossRefzbMATHGoogle Scholar
  45. 45.
    Di Gesu, V., Starovoitov, V.: Distance-based functions for image comparison. Pattern Recogn. Lett. 20(2), 207–214 (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    D’Agostino, R.B.: An omnibus test of normality for moderate and large size samples. Biometrika 58(2), 341–348 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    D’Agostino, R.B., Pearson, E.S.: Tests for departure from normality. empirical results for the distributions of b2 and b1. Biometrika 60(3), 613–622 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alessandro Re
    • 1
  • Mauro Castelli
    • 1
  • Leonardo Vanneschi
    • 1
  1. 1.NOVA IMS, Universidade Nova de LisboaLisboaPortugal

Personalised recommendations