Advertisement

In Pursuit of High Redshift Galaxies

  • Roberto RampazzoEmail author
  • Mauro D’Onofrio
  • Simone Zaggia
  • Stanislav George Djorgovski
  • Debra M. Elmegreen
  • Bianca M. Poggianti
  • Daniela Calzetti
  • Françoise Combes
  • Malcolm S. Longair
  • Volker Bromm
Chapter
  • 617 Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 435)

Abstract

Some contributions in Chap. 1 have highlighted the impact of the discovery in the 1960s of a handful of radio galaxies and Quasars in the redshift range z ∼ 0.2–0.4. About 40 years later, at the end of the twentieth Century, the systematic exploration of galaxies reached z ∼ 1–3. The combination of HST deep imaging and the coming into operation of the 8–10 m class telescopes with their spectroscopic capabilities, move ahead the limits. At the same time, astronomers greatly improved their strategies to hunt high-redshift galaxies. Today, it is not infrequent the spectroscopic confirmation of galaxies at z ∼ 7–8, pushing the detection limits more or less to the end of the re-ionization era. The gauntlet to observe the so called “first galaxies”, i.e. those assembling during the first billion years of the cosmic time, is throw down.

Keywords

Dark Matter Star Formation Radio Galaxy High Redshift Star Formation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham, R., van den Bergh, S., Glazebrook, K., Ellis, R.S., Santiago, B.X., et al.: The morphologies of distant galaxies. II. Classifications from the Hubble space telescope medium deep survey. Astrophys. J. Suppl. 107, 1 (1996)Google Scholar
  2. Barkana, R., Loeb, A.: The physics and early history of the intergalactic medium. Rep. Prog. Phys. 70, 627 (2007)ADSCrossRefGoogle Scholar
  3. Beckwith, S., Stiavelli, M., Koekemoer, A., Caldwell, J.A.R., Ferguson, H.C., et al.: The Hubble ultra deep field. Astron. J. 132, 1729 (2006)ADSCrossRefGoogle Scholar
  4. Beers, T.C., Christlieb, N.: The discovery and analysis of very metal-poor stars in the Galaxy. Ann. Rev. Astron. Astrophys. 43, 531 (2005)ADSCrossRefGoogle Scholar
  5. Belli, S., Newman, A.B., Ellis, R.S., Konidaris, N.P.: MOSFIRE absorption line spectroscopy of z > 2 quiescent galaxies: probing a period of rapid size growth. Astropys. J. Lett. 788, L29 (2014)ADSCrossRefGoogle Scholar
  6. Blumenthal, G.R., Faber, S.M., Primack, J.R, Rees, M.J.: Formation of galaxies and large-scale structure with cold dark matter. Nature 311, 517 (1984)ADSCrossRefGoogle Scholar
  7. Bournaud, F., Elmegreen, B.G.: Unstable disks at high redshift: evidence for smooth accretion in galaxy formation. Astropys. J. Lett. 694, L158 (2009)ADSCrossRefGoogle Scholar
  8. Bournaud, F., Perret, V., Renaud, F., Dekel, A., Elmegreen, B.G., et al.: The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift. Astrophys. J. 780, 57 (2014)ADSCrossRefGoogle Scholar
  9. Bouwens, R.J., Illingworth, G.D., Oesch, P.A., Labbé, I., Trenti, M., et al.: Ultraviolet luminosity functions from 132 z ∼ 7 and z ∼ 8 Lyman-break galaxies in the ultra-deep HUDF09 and wide-area early release science WFC3/IR observations. Astrophys. J. 737, 90 (2011)ADSCrossRefGoogle Scholar
  10. Bouwens, R.J., Illingwirth, G.D., Oesch, P.A., Labbé, I., van Dokkum, P. G., et al.: UV-continuum slopes of > 4000 z ∼ 4-8 galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-North fields. Astrophys. J. 793, 115 (2014)ADSCrossRefGoogle Scholar
  11. Boylan-Kolchin, M., Bullock, J. S., Kaplinghat, M.: Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40 (2011)ADSCrossRefGoogle Scholar
  12. Bromm, V.: Formation of the first stars. Rep. Prog. Phys. 76, 112901 (2013)ADSCrossRefGoogle Scholar
  13. Bromm, V., Yoshida, N.: The first galaxies. Ann. Rev. Astron. Astrophys. 49, 373–407 (2011)ADSCrossRefGoogle Scholar
  14. Brown, R.L., vanden Bout, P.A.: CO emission at z=2.2867 in the galaxy IRAS F10214 + 4724. Astron. J. 102, 1956 (1991)Google Scholar
  15. Caffau, E., Bonifacio, P., François, P., Sbordone, L., Monaco, L., et al.: An extremely primitive star in the galactic halo. Nature 477, 67 (2011)ADSCrossRefGoogle Scholar
  16. Calzetti, D.: Star formation rate indicators. In: Falcon–Barroso, J., Knapen, J. (eds.) Secular Evolution of Galaxies. XXIII Canary Islands Winter School of Astrophysics, vol. 419. Cambridge University Press, Cambridge (2013)Google Scholar
  17. Calzetti, D., Kinney, A.L., Storchi–Bergmann, T.: Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law. Astrophys. J. 429, 582 (1994)Google Scholar
  18. Calzetti, D., Armus, L., Bohlin, R.C., Kinney, A.L., Koornneef, J., Storchi-Bergmann, T.: The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682 (2000)ADSCrossRefGoogle Scholar
  19. Calzetti, D., Kennicutt, R.C., Engelbracht, C.W., Leitherer, C., Draine, B. T., et al.: The calibration of mid-infrared star formation rate indicators. Astrophys. J. 666, 870 (2007)ADSCrossRefGoogle Scholar
  20. Carilli, C.L., Walter, F.: Cool gas in high-redshift galaxies. Ann. Rev. Astron. Astrophys. 51, 105 (2013)ADSCrossRefGoogle Scholar
  21. Carollo, C.M., Bschorr, T.J., Renzini, A., Lilly, S.J., Capak, P., Cibinel, A., et al.: Newly quenched galaxies as the cause for the apparent evolution in average size of the population. Astrophys. J. 773, 112 (2013)ADSCrossRefGoogle Scholar
  22. Cassata, P., Giavalisco, M., Williams, C.C., Guo, Y., Lee, B., et al.: Constraining the assembly of normal and compact passively evolving galaxies from redshift z = 3 to the present with CANDELS. Astrophys. J. 775, 106 (2013)ADSCrossRefGoogle Scholar
  23. Cimatti, A., Cassata, P., Pozzetti, L., Kurk, J., Mignoli, M., et al.: GMASS ultradeep spectroscopy of galaxies at z ∼ 2. II. Superdense passive galaxies: how did they form and evolve? Astron. Astrophys. 482, 21 (2008)Google Scholar
  24. Combes, F., Garcia-Burillo, S., Braine, J., Schinnerer, E., Walter, F., Colina, L.: Gas fraction and star formation efficiency at z ≤ 1.0. Astron. Astrophys. 550, A41 (2013)Google Scholar
  25. Conselice, C.: Penetrating bars through masks of cosmic dust: the Hubble tuning fork strikes a new note. In: Block, D.L. Puerari, I., Freeman, K.C., Groess, R., Block, E.K. (eds.) The Galaxy Structure-Redshift Relationship. Proceedings of a Conference Held at Pilanesburg National Park (South Africa). Astrophysics and Space Science Library. 319, p. 489. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  26. Conselice, C.: The evolution of galaxy structure over cosmic time. Ann. Rev. Astron. Astrophys. 52, 291 (2014)ADSCrossRefGoogle Scholar
  27. Conselice, C., Yang, C., Bluck, A.: The structures of distant galaxies - III. The merger history of over 20000 massive galaxies at z < 1.2. Mon. Not. R. Astron. Soc. 394, 1956 (2009)Google Scholar
  28. Conselice, C., Mortlock, A., Bluck, A., Grutzbauch, R., Duncan, K.: Gas accretion as a dominant formation mode in massive galaxies from the GOODS NICMOS Survey. Mon. Not. R. Astron. Soc. 430, 1051 (2013)ADSCrossRefGoogle Scholar
  29. Cooke, R., Pettini, M., Steidel, C.C., Rudie, G.C., Jorgenson, R.A.: A carbon-enhanced metal-poor damped Lya system: probing gas from Population III nucleosynthesis? Mon. Not. R. Astron. Soc. 412, 1047 (2011)ADSGoogle Scholar
  30. Cowie, L., Hu, E., Songaila, A.: Faintest galaxy morphologies from HST WFPC2 imaging of the Hawaii Survey Fields. Astron. J. 110, 1576 (1995)ADSCrossRefGoogle Scholar
  31. Daddi, E., Renzini, A., Pirzkal, N., Cimatti, A., Malhotra, S., et al.: Passively evolving early-type galaxies at 1.4 ≤ z ≤ 2.5 in the Hubble ultra deep field. Astrophys. J. 626, 680 (2005)Google Scholar
  32. Davis, M.: The DEEP2 redshift survey. Presented at the KITP program: the new cosmology confronts observation: the cosmic microwave background, dark matter, dark energy, and brane worlds, Oct 10, 2002, Kavli Institute for Theoretical Physics, University of California, Santa Barbara (2002)Google Scholar
  33. Davis, M., Faber, S.M., Newman, J., Phillips, A.C., Ellis, R.S., et al.: Science Objectives and Early Results of the DEEP2 Redshift Survey. In: Guhathakurta, P. (ed.) Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes. II. Proceeding of SPIE, vol. 4834, p. 161 (2003)Google Scholar
  34. Dìaz-Santos, T., Armus, L., Charmandaris, V., Stierwalt, S., Murphy, E. J., et al.: Explaining the [C II]157.7 μm deficit in luminous infrared galaxies - first results from a Herschel/PACS study of the GOALS sample. Astrophys. J. 774, 68 (2013)Google Scholar
  35. Disney, M.J., Lang, R.H.: The galaxy ancestor problem. Mon. Not. R. Astron. Soc. 426, 1731 (2012)ADSCrossRefGoogle Scholar
  36. Djorgovski, S.: On the observability of primeval galaxies. In: de Carvalho, R. (ed.) Cosmology and Large-Scale Structure in the Universe. ASP Conference Series, vol. 24, p. 73 (1992)Google Scholar
  37. Djorgovski, S.G.: In: Bender, R., Davies, R. (eds.) New Light on Galaxy Evolution. Proceedings on IAU Symposium, vol. 171, p. 277. Kluwer, Dordrecht (1996)Google Scholar
  38. Djorgovski, S., Spinrad, H., Marr, J.: Observing the galaxy evolution at high redshifts. In: Nieto, J.-L. (ed.) New Aspects of Galaxy Photometry. Lecture Notes in Physics, vol. 232, p. 193. Springer, New York (1985)Google Scholar
  39. Djorgovski, S., Spinrad, H., McCarthy, P., Strauss, M.: Discovery of a probable galaxy with a redshift of 3.218. Astropys. J. Lett. 299, L1 (1985)Google Scholar
  40. Elmegreen, B.G., Elmegreen, D.M., Vollbach, D., Foster, E., Ferguson. T.: On the Origin of Exponential Disks at High Redshift. Astrophys. J. 634, 101 (2005)Google Scholar
  41. Elmegreen, D.M., Elmegreen, B.G.: The onset of spiral structure in the universe. Astrophys. J. 781, 11 (2014)ADSCrossRefGoogle Scholar
  42. Elmegreen, D.M., Elmegreen, B.G., Ravindranath, S., Coe, D.: Resolved galaxies in the Hubble ultra deep field: star formation in disks at high redshift. Astrophys. J. 658, 763 (2007)ADSCrossRefGoogle Scholar
  43. Faure, C., Kneib, J-P., Covone, G., Tasca, L. et al.: First catalog of strong lens candidates in the COSMOS Field. Astrophys. J. Suppl. 176, 19 (2008)ADSCrossRefGoogle Scholar
  44. Feruglio, C., Maiolino, R., Piconcelli, E. Menci, N., Aussel, H., et al.: Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 518, L155 (2010)ADSCrossRefGoogle Scholar
  45. Finkelstein, S.L., Papovich, C., Dickinson, M., Song, M., Tilvi, V., et al.: A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51. Nature 502, 524 (2013)Google Scholar
  46. Forster-Schreiber, N., Genzel, R., Bouché, N., Cresci, G., Davies, R., et al.: The SINS survey: SINFONI integral field spectroscopy of z ∼ 2 Star-forming Galaxies. Astrophys. J. 706, 1364 (2009)ADSCrossRefGoogle Scholar
  47. Frebel, A., Simon, J. D., Kirby, E. N.: Segue 1: An Unevolved Fossil Galaxy from the Early Universe. Astrophys. J. 786, 74 (2014)ADSCrossRefGoogle Scholar
  48. Freeman, K., Bland-Hawthorn, J.: The new galaxy: signatures of its formation. Ann. Rev. Astron. Astrophys. 40, 487 (2002)ADSCrossRefGoogle Scholar
  49. Fumagalli, M., O’Meara, J.M., Prochaska, J.X.: Detection of pristine gas two billion years after the big bang. Science 334, 1245 (2011)ADSCrossRefGoogle Scholar
  50. Heger, A., Woosley, S.E.: The nucleosynthetic signature of population III. Astrophys. J. 567, 532 (2002)ADSCrossRefGoogle Scholar
  51. Humason, M.L., Mayall, N.U., Sandage, A.R.: Redshifts and magnitudes of extragalactic nebulae. Astron. J. 61, 97 (1956)ADSCrossRefGoogle Scholar
  52. Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K. Maeda, K.: The first chemical enrichment in the Universe and the formation of hyper metal-poor stars. Science 309, 451 (2005)ADSCrossRefGoogle Scholar
  53. Karlsson, T., Bromm, V., Bland-Hawthorn, J.: Pregalactic metal enrichment: the chemical signatures of the first stars. Rev. Modern Phys. 85, 809 (2013)ADSCrossRefGoogle Scholar
  54. Kassin, S., Brooks, A., Governato, F., Weiner, B., Gardner, J.: Kinematic evolution of simulated star-forming galaxies. Astrophys. J. 790, 89 (2014)ADSCrossRefGoogle Scholar
  55. Kennicutt, R.C., Evans, N.J.: Star Formation in the Milky Way and nearby galaxies. Ann. Rev. Astron. Astrophys. 50, 531 (2012)ADSCrossRefGoogle Scholar
  56. Koo, D., Kron, R.: Evidence for evolution in faint field galaxy samples. Ann. Rev. Astron. Astrophys. 30, 613 (1992)ADSCrossRefGoogle Scholar
  57. Le Fevre, O., et al.: Virmos-VLT deep survey (VVDS). In: Guhathakurta, P. (ed.) Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes. II. Proceeding of SPIE, vol. 4834, p. 173 (2003)Google Scholar
  58. Loeb, A., Furlanetto, S.R.: The First Galaxies in the Universe. Princeton University Press, Princeton (2013)CrossRefzbMATHGoogle Scholar
  59. Lotz, J.M., Madau, P., Giavalisco, M., Primack, J., Ferguson, H.C.: The rest-frame far-ultraviolet morphologies of star-forming galaxies at z ∼ 1.5 and 4. Astrophys. J. 636, 592 (2006)Google Scholar
  60. Madau, P., Dickinson, M.: Cosmic star-formation history. Ann. Rev. Astron. Astrophys. 52, 415 (2014)ADSCrossRefGoogle Scholar
  61. Madau, P., Ferguson, H.C., Dickinson, M.E., Giavalisco, M., Steidel, C.C., Fruchter, A.: High-redshift galaxies in the Hubble deep field: colour selection and star formation history to z ∼ 4. Mon. Not. R. Astron. Soc. 283, 1388 (1996)ADSCrossRefGoogle Scholar
  62. McKee, C.F., Ostriker, E.C.: Theory of star formation. Ann. Rev. Astron. Astrophys. 45, 565 (2007)ADSCrossRefGoogle Scholar
  63. Meiksin, A.: The physics of the intergalactic medium. Rev. Mod. Phys. 81, 1405 (2009)ADSCrossRefzbMATHGoogle Scholar
  64. Meurer, G.R., Heckman, T.M., Calzetti, D.: Dust absorption and the ultraviolet luminosity density at z ∼ 3 as calibrated by local starburst galaxies. Astrophys. J. 521, 64 (1999)ADSCrossRefGoogle Scholar
  65. Minkowski, R.: A new distant cluster of galaxies. Astrophys. J. 132, 908–910 (1960)ADSCrossRefGoogle Scholar
  66. Mortlock, D.J., Warren, S.J., Venemans, B.P., Patel, M., et al.: A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011)ADSCrossRefGoogle Scholar
  67. Noeske, K., Weiner, B.J., Faber, S.M., Papovich, C., Koo, D.C., Somerville, R.S., et al.: Star formation in AEGIS field galaxies since z=1.1: staged galaxy formation and a model of mass-dependent gas exhaustion. Astropys. J. Lett. 660, L47 (2007)Google Scholar
  68. Obreschkow, D., Croton, D., de Lucia, G., Khochfar, S., Rawlings, S.: Simulation of the cosmic evolution of atomic and molecular hydrogen in galaxies. Astrophys. J. 698, 1467 (2009)ADSCrossRefGoogle Scholar
  69. Oesch, P.A., van Dokkum, P.G., Illingworth, G.D., Bouwens, R.J., Momcheva, I., et al.: A spectroscopic redshift measurement for a luminous Lyman break galaxy at z = 7.730 Using Keck/MOSFIRE. Astropys. J. Lett. 804, L30 (2015)Google Scholar
  70. Pawlik, A.H., Milosavljević, M., Bromm, V.: The first galaxies: assembly under radiative feedback from the first stars. Astrophys. J. 767, 59 (2013)ADSCrossRefGoogle Scholar
  71. Poggianti, B.M., Calvi, R., Bindoni, D., D’Onofrio, M., Moretti, A.: Superdense galaxies and the mass-size relation at low redshift. Astrophys. J. 762, 77 (2013a)ADSCrossRefGoogle Scholar
  72. Poggianti, B.M., Moretti, A., Calvi, R., D’Onofrio, M., Valentinuzzi, T., et al.: The evolution of the number density of compact galaxies. Astrophys. J. 777, 125 (2013b)ADSCrossRefGoogle Scholar
  73. Pritchet, C.: The search for primeval galaxies. Publ. Astron. Soc. Pac. 106, 1052 (1994)ADSCrossRefGoogle Scholar
  74. Reddy, N.A., Kriek, M., Shapley, A.E., et al.: The MOSDEF survey: measurements of Balmer decrements and the dust attenuation curve at redshifts z ∼ 1.4–2.6. Astrophys. J. 806, 259 (2015)Google Scholar
  75. Robertson, B.E., Ellis, R.S., Dunlop, J.S., McLure, Ross J., Stark, D.P.: Early star-forming galaxies and the reionization of the Universe. Nature 468, 49 (2010)Google Scholar
  76. Sanchez Almeida, J., Elmegreen, B., Munoz-Tunon, C., Elmegreen, D.: Star formation sustained by gas accretion. Astron. Astrophys. Rev. 22, 71 (2014)ADSCrossRefGoogle Scholar
  77. Sanchez Almeida, J., Morales-Luis, A., Munoz-Tunon, C., Elmegreen, D., Elmegreen, B., Mendez-Abreu, J.: Metallicity inhomogeneities in local star-forming galaxies as a sign of recent metal-poor gas accretion. Astrophys. J. 783, 45 (2014)ADSCrossRefGoogle Scholar
  78. Saracco, P., Longhetti, M., Gargiulo, A.: The number density of superdense early-type galaxies at 1 < z < 2 and the local cluster galaxies Mon. Not. R. Astron. Soc. 408, L21 (2010)ADSCrossRefGoogle Scholar
  79. Schaerer, D.: The transition from Population III to normal galaxies: Lyalpha and He II emission and the ionising properties of high redshift starburst galaxies. Astron. Astrophys. 397, 527 (2003)ADSCrossRefGoogle Scholar
  80. Scoville, N.,Aussel, H., Brusa, M., Capak, P., Carollo, C.M., et al.: The cosmic evolution survey (COSMOS): overview. Astrophys. J. Suppl. 172, 1 (2007)ADSCrossRefGoogle Scholar
  81. Shibuya, T., Kashikawa, N., Ota, K., Iye, M., Ouchi, M., et al.: The first systematic survey for Lyα Emitters at z = 7.3 with red-sensitive Subaru/Suprime-Cam. Astrophys. J. 752, 114 (2012)Google Scholar
  82. Simcoe, R.A., Sullivan, P.W., Cooksey K.L., Kao, M.M., Matejek, M.S., Burgasser, A.J.: Extremely metal-poor gas at a redshift of 7. Nature 492, 79 (2012)ADSCrossRefGoogle Scholar
  83. Smail, I., Ivison, R.J., Blain, A.W., Kneib, J.P.: Faint submillimeter galaxies: Hubble space telescope morphologies and colors. Astropys. J. Lett. 507, L21 (1998)ADSCrossRefGoogle Scholar
  84. Spinrad, H., Djorgovski, S.: Spectroscopy of extremely distant radio galaxies. Astropys. J. Lett. 285, L49 (1984)ADSCrossRefGoogle Scholar
  85. Spinrad, H., Stern, D.: Publ. Astron. Soc. Pac. 111, 1475 (1999)ADSCrossRefGoogle Scholar
  86. Springel, V., White, S.D.M., Jenkins, A., Frenk, C.S., Yoshida, N., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629 (2005)ADSCrossRefGoogle Scholar
  87. Steidel, C., Giavalisco, M., Pettini, M., Dickinson, M., Adelberger, K.: Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astropys. J. Lett. 462, L17 (1996)ADSCrossRefGoogle Scholar
  88. Tacconi, L.J., Genzel, R., Neri, R., Cox, P., Cooper, M.C., et al.: High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781 (2010)ADSCrossRefGoogle Scholar
  89. Tacconi, L.J., Neri, R., Genzel, R., Combes, F., Bolatto, A., et al.: Phibss: molecular gas content and scaling relations in z ∼ 1-3 massive, main-sequence star-forming galaxies. Astrophys. J. 768, 74 (2013)ADSCrossRefGoogle Scholar
  90. Tanvir, N.R.: Probing galaxy evolution with gamma-ray bursts. EAS Publ. Ser. 61, 421–425 (2013)CrossRefGoogle Scholar
  91. Taylor, E.N., Franx, M., Glazebrook, K., Brinchmann, J., van der Wel, A., van Dokkum, P.G.: On the dearth of compact, massive, red sequence galaxies in the local Universe. Astrophys. J. 720, 723 (2010)ADSCrossRefGoogle Scholar
  92. Thompson, D., Djorgovski, S.: Serendipitous Long-slit surveys for primeval galaxies. Astron. J. 110, 982 (1995)ADSCrossRefGoogle Scholar
  93. Thompson, D., Djorgovski, S., Trauger, J.: A narrow band imaging survey for primeval galaxies. Astron. J. 110, 963 (1995)ADSCrossRefGoogle Scholar
  94. Tran, H., Sirianni, M., Ford, H.C., Illingworth, G.D., Clampin, M., et al.: Advanced camera for surveys observations of young star clusters in the interacting galaxy UGC 10214. Astrophys. J. 585, 750 (2003)ADSCrossRefGoogle Scholar
  95. Trujillo, I., Feulner, G., Goranova, Y., Hopp, U., Longhetti, M., et al.: Extremely compact massive galaxies at z ∼ 1.4. Mon. Not. R. Astron. Soc. 373, L36 (2006)Google Scholar
  96. Trujillo, I., Cenarro, A.J., de Lorenzo-Cáceres, A., Vazdekis, A., de la Rosa, I.G., Cava, A.: Superdense massive galaxies in the nearby Universe. Astropys. J. Lett. 692, L118 (2009)ADSCrossRefGoogle Scholar
  97. Trujillo, I., Ferre-Mateu, A., Balcells, M., Vazdekis, A., Sanchez-Blazquez, P.: NGC 1277: a massive compact relic galaxy in the nearby Universe. Astropys. J. Lett. 780, L20 (2014)ADSCrossRefGoogle Scholar
  98. Tseliakhovich, D., Hirata, C.: Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010)ADSCrossRefGoogle Scholar
  99. Valentinuzzi, T., Fritz, J., Poggianti, B.M., Cava, A., Bettoni, D., et al.: Superdense massive galaxies in WINGS local clusters. Astrophys. J. 712, 226 (2010)ADSCrossRefGoogle Scholar
  100. van den Bergh, S., Abraham, R.G., Ellis, R.S., Tanvir, N.R., Santiago, B.X., Glazebrook, K.G.: A morphological catalog of galaxies in the Hubble deep field. Astron. J. 112, 359 (1996)ADSCrossRefGoogle Scholar
  101. van den Bosch, R., Gebhardt, K., Gultekin, K., van de Ven, G., van der Wel, A., Walsch, J.L.: An over-massive black hole in the compact lenticular galaxy NGC 1277. Nature 491, 729 (2012)ADSCrossRefGoogle Scholar
  102. van Dokkum, P., Franx, M., Kriek, M., Holden, B., Illingworth, G.D., et al.: Confirmation of the remarkable compactness of massive quiescent galaxies at z ∼ 2.3: early-type galaxies did not form in a simple monolithic collapse. Astropys. J. Lett. 677, L5 (2008)Google Scholar
  103. Wiklind, T., Mobasher, B., Bromm, V.: The First Galaxies. Springer, Berlin (2013)CrossRefGoogle Scholar
  104. Williams, R., Blacker, B., Dickinson, M., Dixon, W.V.D., Ferguson, H.C., et al.: The Hubble deep field: observations, data reduction, and galaxy photometry. Astron. J. 112, 1335 (1996)ADSCrossRefGoogle Scholar
  105. Williams, R., Baum, S., Bergeron, L., Bernstein, N., Blacker, B.S., et al.: The Hubble deep field South: formulation of the observing campaign. Astron. J. 120, 2735 (2000)ADSCrossRefGoogle Scholar
  106. Wuyts, S., Förster Schreiber, N.M., van der Wel, A., Magnelli, B., Berta, S., et al.: Galaxy structure and mode of star formation in the SFR-mass plane from z ∼ 2.5 to z ∼ 0.1. Astrophys. J. 742, 96 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Roberto Rampazzo
    • 1
    Email author
  • Mauro D’Onofrio
    • 2
  • Simone Zaggia
    • 1
  • Stanislav George Djorgovski
    • 3
  • Debra M. Elmegreen
    • 4
  • Bianca M. Poggianti
    • 1
  • Daniela Calzetti
    • 5
  • Françoise Combes
    • 6
  • Malcolm S. Longair
    • 7
  • Volker Bromm
    • 8
  1. 1.INAF–Osservatorio Astronomico di PadovaPadovaItaly
  2. 2.Department of Physics and AstronomyUniversity of PadovaPaduaItaly
  3. 3.Caltech AstrophysicsPasadenaUSA
  4. 4.Physics and Astronomy DepartmentVassar CollegePoughkeespleUSA
  5. 5.Department of AstronomyUniversity of MassachusettsAmherstUSA
  6. 6.Observatoire de Paris, LERMAParisFrance
  7. 7.Astrophysics Group/Cavendish LaboratoryUniversity of CambridgeCambridgeUK
  8. 8.Department of AstronomyUniversity of Texas at AustinAustinUSA

Personalised recommendations