Exploiting Temporal Dimension in Tensor-Based Link Prediction

  • Jaroslav KuchařEmail author
  • Milan Dojchinovski
  • Tomas Vitvar
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 246)


In the recent years, there is a significant interest in a link prediction - an important task for graph-based data structures. Although there exist many approaches based on the graph theory and factorizations, there is still lack of methods that can work with multiple types of links and temporal information. The creation time of a link is an important aspect: it reflects age and credibility of the information. In this paper, we introduce a method that predicts missing links in RDF datasets. We model multiple relations of RDF as a tensor that incorporates the creation time of links as a key component too. We evaluate the proposed approach on real world datasets: an RDF representation of the ProgrammableWeb directory and a subset of the DBpedia focused on movies. The results show that the proposed method outperforms other link prediction approaches.


Link prediction Temporal information RDF Tensor factorization 



This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS14/104/OHK3/1T/18. We also thank to for supporting this research.


  1. 1.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ebbinghaus, H.: Memory: A Contribution to Experimental Psychology. Teachers College, Columbia University, New York (1913). Number 3CrossRefGoogle Scholar
  3. 3.
    Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the diversity and availability of temporal information in linked open data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Gutiérrez-Basulto, V., Klarman, S.: Towards a unifying approach to representing and querying temporal data in description logics. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 90–105. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML 2011, pp. 809–816. ACM, New York (2011)Google Scholar
  6. 6.
    Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 271–280. ACM, New York (2012)Google Scholar
  7. 7.
    Vitvar, T., Kopecký, J., Viskova, J., Fensel, D.: WSMO-Lite annotations for web services. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 674–689. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kopecky, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: semantic annotations for wsdl and xml schema. IEEE Internet Comput. 11, 60–67 (2007)CrossRefGoogle Scholar
  9. 9.
    Oyama, S., Hayashi, K., Kashima, H.: Cross-temporal link prediction. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM 2011, pp. 1188–1193. IEEE Computer Society, Washington, D.C. (2011)Google Scholar
  10. 10.
    Kuchar, J.: Augmenting a feature set of movies using linked open data. In: Proceedings of the RuleML 2015 Challenge, the Special Track on Rule-based Recommender Systems for the Web of Data, the Special Industry Track and the RuleML 2015 Doctoral Consortium hosted by the 9th International Web Rule Symposium (RuleML 2015), Germany, Berlin, 2–5 August 2015Google Scholar
  11. 11.
    Dooms, S., De Pessemier, T., Martens, L.: Movietweetings: a movie rating dataset collected from twitter. In: Workshop on Crowdsourcing and Human Computation for Recommender Systems, CrowdRec at RecSys 2013 (2013)Google Scholar
  12. 12.
    Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: IJCAI, pp. 1300–1309. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Khosravi, Hassan, Bina, Bahareh: A survey on statistical relational learning. In: Farzindar, Atefeh, Kešelj, Vlado (eds.) Canadian AI 2010. LNCS, vol. 6085, pp. 256–268. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gao, S., Denoyer, L., Gallinari, P.: Probabilistic latent tensor factorization model for link pattern prediction in multi-relational networks. CoRR abs/1204.2588 (2012)Google Scholar
  15. 15.
    London, B., Rekatsinas, T., Huang, B., Getoor, L.: Multi-relational learning using weighted tensor decomposition with modular loss. CoRR abs/1303.1733 (2013)Google Scholar
  16. 16.
    Taskar, B., fai Wong, M., Abbeel, P., Koller, D.: Link prediction in relational data. In: In Neural Information Processing Systems (2003)Google Scholar
  17. 17.
    Raymond, R., Kashima, H.: Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 131–147. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Ngomo, A.C.N., Auer, S.: Limes: a time-efficient approach for large-scale link discovery on the web of data. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI 2011, vol. 3, pp. 2312–2317. AAAI Press (2011)Google Scholar
  19. 19.
    Bizer, C., Volz, J., Kobilarov, G., Gaedke, M.: Silk - a link discovery framework for the web of data. In: 18th International World Wide Web Conference (2009)Google Scholar
  20. 20.
    Spiegel, S., Clausen, J., Albayrak, S., Kunegis, J.: Link prediction on evolving data using tensor factorization. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds.) PAKDD Workshops 2011. LNCS, vol. 7104, pp. 100–110. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Acar, E., Dunlavy, D.M., Kolda, T.G.: Link prediction on evolving data using matrix and tensor factorizations. In: Proceedings of the 2009 IEEE International Conference on Data Mining Workshops, ICDMW 2009, pp. 262–269. IEEE Computer Society, Washington, D.C. (2009)Google Scholar
  22. 22.
    Dunlavy, D.M., Kolda, T.G., Acar, E.: Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data 5, 10:1–10:27 (2011)CrossRefGoogle Scholar
  23. 23.
    Ermis, B., Acar, E., Cemgil, A.T.: Link prediction via generalized coupled tensor factorisation. CoRR abs/1208.6231(2012)Google Scholar
  24. 24.
    Li, D., Xu, Z., Li, S., Sun, X.: Link prediction in social networks based on hypergraph. In: Proceedings of the 22nd International Conference on World Wide Web Companion, WWW 2013 Companion, Republic and Canton of Geneva, Switzerland. International World Wide Web Conferences Steering Committee, pp. 41–42 (2013)Google Scholar
  25. 25.
    Symeonidis, P., Perentis, C.: Link prediction in multi-modal social networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 147–162. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jaroslav Kuchař
    • 1
    Email author
  • Milan Dojchinovski
    • 1
  • Tomas Vitvar
    • 1
  1. 1.Web Intelligence Research Group, Faculty of Information TechnologyCzech Technical University in PraguePragueCzech Republic

Personalised recommendations