Towards an Interoperable Decision Support Platform for Eco-labeling Process

  • Da XuEmail author
  • Hedi Karray
  • Bernard Archimède
Conference paper
Part of the Proceedings of the I-ESA Conferences book series (IESACONF, volume 8)


Along with the rising concern of environmental performance, eco-labelling is becoming more popular. However, the complex process of eco-labelling demotivated manufacturers and service providers to be certificated. In this paper, we propose a decision support system aiming at further improvement and acceleration of the eco-labeling process in order to democratize a broader application and certification of eco-labels. This decision support system will be based upon a comprehensive knowledge base composed of various domain ontologies covering the whole life cycle of a product or service. Through continuous enrichment on the knowledge base in modular ontologies and by defing standard RDF and OWL format interfaces, the decision support system will stimulate domain knowledge sharing and have the interoperability to be applied into other practice.


Eco-labeling Knowledge sharing Interoperability Modular ontology Decision support system 


  1. 1.
    Eco-labeling Markets. International Institute for Sustainable Development.
  2. 2.
    Lefébure, A., & Rosales Muñoz, R. (2011). Communicating to consumers in Sweden with eco-labels: Is the message getting through?
  3. 3.
    GEN: Global Ecolabelling Network: What is Ecolabelling?
  4. 4.
    Ihamäki, V., van Ooij, E., & van der Panne, S. (2014). Green public procurement in the European Union and the use of eco-labels.
  5. 5.
  6. 6.
    Facts and Figures—Ecolabel—European Commission.
  7. 7.
  8. 8.
    Druzdzel, M. J., & Flynn, R. R. (2003). Encyclopedia of library and information science. In M. Drake (Ed.), Decision support systems (Vol. 1). CRC Press.Google Scholar
  9. 9.
    Guarino, N., Oberle, D., & Staab, S. (2009). What is an ontology? In S. Staab & R. Studer (Eds.), Handbook on ontologies (2nd ed., pp. 1–17). Heidelberg: Springer.CrossRefGoogle Scholar
  10. 10.
    Studer, R., Benjamins, R., & Fensel, D. (1998). Knowledge engineering: Principles and methods. Data & Knowledge Engineering, 25(1–2), 161–198.CrossRefzbMATHGoogle Scholar
  11. 11.
    Genesereth, M. R., & Nilsson, N. J. (1987). Logical foundations of artificial intelligence. Los Altos, CA: Morgan Kaufmann.zbMATHGoogle Scholar
  12. 12.
    Parent, C., & Spaccapietra, S. (2009). An overview of modularity. In Modular ontologies (pp. 5–23). Berlin Heidelberg: Springer.Google Scholar
  13. 13.
    Grau, B. C., Parsia, B., & Sirin, E. (2009). Ontology integration using ε-connections. In Modular ontologies (pp. 293–320). Berlin Heidelberg: Springer.Google Scholar
  14. 14.
    Serafini, L., & Tamilin, A. (2009). Composing modular ontologies with distributed description logics. In Modular ontologies (pp. 321–347). Berlin Heidelberg: Springer.Google Scholar
  15. 15.
    Serafini, L., & Tamilin, A. (2005). Drago: Distributed reasoning architecture for the semantic web. In The semantic web: Research and applications (pp. 361–376). Berlin Heidelberg: Springer.Google Scholar
  16. 16.
    Bao, J., Voutsadakis, G., Slutzki, G., & Honavar, V. (2009). Package-based description logics. In Modular ontologies (pp. 349–371). Berlin Heidelberg: Springer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratoire Génie de Production ENITTarbesFrance

Personalised recommendations