Convergence Polygons for Connections on Nonarchimedean Curves

Conference paper
Part of the Simons Symposia book series (SISY)

Abstract

In classical analysis, one builds the catalog of special functions by repeatedly adjoining solutions of differential equations whose coefficients are previously known functions. Consequently, the properties of special functions depend crucially on the basic properties of ordinary differential equations. This naturally led to the study of formal differential equations, as in the seminal work of Turrittin [165]; this may be viewed retroactively as a theory of differential equations over a trivially valued field. After the introduction of p-adic analysis in the early twentieth century, there began to be corresponding interest in solutions of p-adic differential equations; however, aside from some isolated instances (e.g., the proof of the Nagell–Lutz theorem; see Theorem 3.4), a unified theory of p-adic ordinary differential equations did not emerge until the pioneering work of Dwork on the relationship between p-adic special functions and the zeta functions of algebraic varieties over finite fields (e.g., see [57, 58]). At that point, serious attention began to be devoted to a serious discrepancy between the p-adic and complex-analytic theories: on an open p-adic disc, a nonsingular differential equation can have a formal solution which does not converge in the entire disc (e.g., the exponential series). One is thus led to quantify the convergence of power series solutions of differential equations involving rational functions over a nonarchimedean field; this was originally done by Dwork in terms of the generic radius of convergence [59]. This and more refined invariants were studied by numerous authors during the half-century following Dwork’s initial work, as documented in the author’s book [92].

References

  1. 1.
    André, Y.: Filtrations de type Hasse-Arf et monodromie p-adique. Invent. Math. 148, 285–317 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    André, Y.: Comparison theorems between algebraic and analytic de Rham cohomology. J. Théor. Nombres Bordeaux 16, 335–355 (2004)Google Scholar
  3. 3.
    André, Y.: Dwork’s conjecture on the logarithmic growth of solutions of p-adic differential equations. Compos. Math. 144, 484–494 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    André, Y., Baldassarri, F.: De Rham Cohomology of Differential Modules on Algebraic Varieties. Progress in Mathematics, vol. 189. Birkhäuser, Basel (2001)Google Scholar
  5. 5.
    Atiyah, M.F., Hodge, W.V.D.: Integrals of the second kind on an algebraic variety. Ann. Math. 62, 56–91 (1955)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baker, M., Rumely, R.: Potential Theory and Dynamics on the Berkovich Projective Line. AMS Surveys and Monographs, vol. 159. American Mathematical Society, Providence (2010)Google Scholar
  7. 7.
    Baker, M., et al.: p-adic Geometry: Lectures from the 2007 Arizona Winter School. American Mathematical Society, Providence (2008)Google Scholar
  8. 8.
    Bayer, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization, and metrics on curves. J. Algebr. Geom. (2015). arXiv:1104.0320v3Google Scholar
  9. 9.
    Baker, M., Payne, S., Rabinoff, J.: On the structure of non-Archimedean analytic curves. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 93–121. American Mathematical Society, Providence, RI (2013)Google Scholar
  10. 10.
    Baldassarri, F.: Differential modules and singular points of p-adic differential equations. Adv. Math. 44, 155–179 (1982)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Baldassarri, F.: Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel, I. Cas des courbes. Inv. Math. 87, 83–99 (1987)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Baldassarri, F.: Comparaison entre la cohomologie algébrique et la cohomologie p-adique rigide à coefficients dans un module différentiel, II. Cas des singularités régulières à plusieures variables. Math. An. 280, 417–439 (1988)MathSciNetMATHGoogle Scholar
  13. 13.
    Baldassarri, F.: Continuity of the radius of convergence of differential equations on p-adic analytic curves. Invent. Math. 182, 513–584 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Baldassarri, F.: Radius of convergence of p-adic connections and the p-adic Rolle theorem. Milan J. Math. 81, 397–419 (2013)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Baldassarri, F., Di Vizio, L.: Continuity of the radius of convergence of p-adic differential equations on Berkovich spaces (2007). arXiv:07092008v1Google Scholar
  16. 16.
    Baldassarri, F., Kedlaya, K.S.: Harmonic functions attached to meromorphic connections on non-Archimedean curves (in preparation)Google Scholar
  17. 17.
    Berkovich, V.: Étale cohomology for non-Archimedean analytic spaces. Publ. Math. IHÉS 78, 5–161 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Berkovich, V.: Smooth p-adic analytic spaces are locally contractible. Invent. Math. 137, 1–84 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Berkovich, V.: Smooth p-adic analytic spaces are locally contractible, II. In: Geometric Aspects of Dwork Theory, vol. I, pp. 293–370. de Gruyter, Berlin (2004)Google Scholar
  20. 20.
    Bertin, J.: Obstructions locales, au relèvement de revêtements galoisiens de courbes lisses. C.R. Acad. Sci. Paris Sér. I Math. 326, 55–58 (1998)Google Scholar
  21. 21.
    Beukers, F.: On Dwork’s accessory parameter problem. Math. Z. 241, 425–444 (2002)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bouw, I.I., Wewers, S.: The local lifting problem for dihedral groups. Duke Math. J. 134, 421–452 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bouw, I., Wewers, S.: Group actions on curves and the lifting problem. Course notes for the 2012 Arizona Winter School. Available at http://math.arizona.edu/~swc/aws/2012/
  24. 24.
    Brewis, L.H., Wewers, S.: Artin characters, Hurwitz trees, and the lifting problem. Math. Ann. 345, 711–730 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. Preprint available at http://www.math.jussieu.fr/~ducros/ (2016), downloaded in March 2016
  26. 26.
    Chiarellotto, B.: Sur le théorème de comparaison entre cohomologies de de Rham algébrique et p-adique rigide. Ann. Inst. Fourier (Grenoble) 38, 1–15 (1988)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Chiarellotto, B.: A comparison theorem in \(\mathfrak{p}\)-adic cohomology. Ann. Mat. Pura Appl. 153, 115–131 (1988)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chiarellotto, B., Pulita, A.: Arithmetic and differential Swan conductors of rank 1 representations with finite local monodromy. Am. J. Math. 131, 1743–1794 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Chiarellotto, B., Tsuzuki, N.: Logarithmic growth and Frobenius filtrations for solutions of p-adic differential equations. J. Inst. Math. Jussieu 8, 465–505 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Chiarellotto, B., Tsuzuki, N.: Log-growth filtration and Frobenius slope filtration of F-isocrystals at the generic and special points. Doc. Math. 16, 33–69 (2011)MathSciNetMATHGoogle Scholar
  31. 31.
    Chinburg, T., Guralnick, R., Harbater, D.: Oort groups and local lifting problems. Compos. Math. 144, 849–866 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Chinburg, T., Guralnick, R., Harbater, D.: The local lifting problem for actions of finite groups on curves. Ann. Scient. Éc. Norm. Sup. 44, 537–605 (2011)MathSciNetMATHGoogle Scholar
  33. 33.
    Christol, G.: Modules Différentielles et Équations Différentielles p-adiques. Queen’s University, Kingston (1983)MATHGoogle Scholar
  34. 34.
    Christol, G.: Un théorème de transfert pour les disques singuliers réguliers, Cohomologie p-adique. Astérisque 119–120, 151–168 (1984)MathSciNetGoogle Scholar
  35. 35.
    Christol, G.: Thirty years later. In: Geometric Aspects of Dwork Theory, vol. I, pp. 419–436. de Gruyter, Berlin (2004)Google Scholar
  36. 36.
    Christol, G.: The radius of convergence function for first order differential equations. In: Advances in Non-Archimedean Analysis. Contemporary Mathematics, vol. 551, pp. 71–89. American Mathematical Society, Providence, RI (2011)Google Scholar
  37. 37.
    Christol, G.: Le Théorème de Turrittin p-adique (in preparation); version of 11 Jun 2011 downloaded from http://www.math.jussieu.fr/~christol
  38. 38.
    Christol, G., Dwork, B.: Effective p-adic bounds at regular singular points. Duke Math. J. 62, 689–720 (1991)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Christol, G., Dwork, B.: Modules differentiels sur les couronnes. Ann. Inst. Fourier (Grenoble) 44, 663–701 (1994)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles. Ann. Inst. Four. 43, 1545–1574 (1993)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles, II, Ann. Math. 146, 345–410 (1997)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles, III. Ann. Math. 151, 385–457 (2000)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Christol, G., Mebkhout, Z.: p-adic differential equations. In: Algebra and Number Theory (Fez). Lecture Notes in Pure and Applied Mathematics, vol. 208, pp. 105–116. Dekker, New York (2000)Google Scholar
  44. 44.
    Christol, G., Mebkhout, Z.: Sur le théorème de l’indice des équations différentielles, IV. Invent. Math. 143, 629–672 (2001)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Christol, G., Remmal, S.: Irregular p-adic linear differential equations. In: Algebra and Number Theory (Fez). Lecture Notes in Pure and Applied Mathematics, vol. 208, pp. 195–206. Dekker, New York (2000)Google Scholar
  46. 46.
    Clark, D.: A note on the p-adic convergence of solutions of linear differential equations. Proc. Am. Math. Soc. 17, 262–269 (1966)MathSciNetMATHGoogle Scholar
  47. 47.
    Cohen, A., Temkin, M., Trushin, D.: Morphisms of Berkovich curves and the different function (2014). arXiv:1408.2949v2Google Scholar
  48. 48.
    Conrad, B.: Relative ampleness in rigid geometry. Ann. l’Institut Four. (Grenoble) 56, 1049–1126 (2006)Google Scholar
  49. 49.
    Corry, S.: Galois covers of the open p-adic disc. Manuscripta Math. 131, 43–61 (2010)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Crew, R.: F-isocrystals and p-adic representations. In: Algebraic Geometry—Bowdoin 1985, Part 2. Proceedings of Symposia in Pure Mathematics, vol. 46.2, 111–138. American Mathematical Society, Providence (1987)Google Scholar
  51. 51.
    Crew, R.: Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve. Ann. Scient. Éc. Norm. Sup. 31, 717–763 (1998)MathSciNetMATHGoogle Scholar
  52. 52.
    Crew, R.: Canonical extensions, irregularities, and the Swan conductor. Math. Ann. 316, 19–37 (2000)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Deligne, P.: Équations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Berlin (1970)Google Scholar
  54. 54.
    Ducros, A.: Les espaces de Berkovich sont modérés, d’après E. Hrushovski and F. Loeser, Séminaire Bourbaki exposé 1056. Astérisque 352, 459–507 (2013)MathSciNetGoogle Scholar
  55. 55.
    Ducros, A.: About Hrushovski and Loeser’s work on the homotopy type of Berkovich spaces (2015). arXiv:1309.0340v2Google Scholar
  56. 56.
    Ducros, A.: La Structure des Courbes Analytiques (in preparation); version of 12 Feb 2014 downloaded from http://www.math.jussieu.fr/~ducros/livre.html
  57. 57.
    Dwork, B.: On the zeta function of a hypersurface, II. Ann. Math. 80, 227–299 (1964)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Dwork, B.: p-adic cycles. Publ. Math. IHÉS 37, 27–115 (1969)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Dwork, B.: On p-adic differential equations, II: the p-adic asymptotic behavior of solutions of linear differential equations with rational function coefficients. Ann. Math. 98, 366–376 (1973)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Dwork, B.: On p-adic differential equations, III: on p-adically bounded solutions of ordinary linear differential equations with rational function coefficients. Invent. Math. 20, 35–45 (1973)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Dwork, B.: Bessel functions as p-adic functions of the argument. Duke Math. J. 41, 711–738 (1974)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Dwork, B.: On exponents of p-adic differential equations. J. Reine Angew. Math. 484, 85–126 (1997)MathSciNetMATHGoogle Scholar
  63. 63.
    Dwork, B., Robba, P.: On ordinary linear p-adic differential equations, Trans. Am. Math. Soc. 231, 1–46 (1977)MathSciNetMATHGoogle Scholar
  64. 64.
    Dwork, B., Robba, P.: On natural radii of p-adic convergence. Trans. Am. Math. Soc. 256, 199–213 (1979)MathSciNetMATHGoogle Scholar
  65. 65.
    Dwork, B., Robba, P.: Effective p-adic bounds for solutions of homogeneous linear differential equations. Trans. Am. Math. Soc. 259, 559–577 (1980)MathSciNetMATHGoogle Scholar
  66. 66.
    Dwork, B., Gerotto, G., Sullivan, F.: An Introduction to G-Functions. Annals of Mathematics Studies, vol. 133. Princeton University Press, Princeton (1994)Google Scholar
  67. 67.
    Faber, X.: Topology and geometry of the Berkovich ramification locus for rational functions, I. Manuscripta Math. 142, 439–474 (2013)MathSciNetCrossRefMATHGoogle Scholar
  68. 68.
    Faber, X.: Topology and geometry of the Berkovich ramification locus for rational functions, II. Math. Ann. 356, 819–844 (2013)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Garuti, M.: Prolongement de revêtements galoisiens en géométrie rigide. Compos. Math. 104, 305–331 (1996)MathSciNetGoogle Scholar
  70. 70.
    Garuti, M.: Linear systems attached to cyclic inertia. In: Arithmetic Fundamental Groups and Noncommutative Algebra (Berkeley, CA, 1999). Proceedings of Symposia in Pure Mathematics, vol. 70, 377–386. American Mathematical Society, Providence, RI (2002)Google Scholar
  71. 71.
    Gérard, R., Levelt, A.M.: Invariants mesurant l’irrégularité en un point singulier des systèmes d’équations différentielles linéaires. Ann. Inst. Four. (Grenoble) 23, 157–195 (1973)Google Scholar
  72. 72.
    Green, B., Matignon, M.: Liftings of Galois covers of smooth curves. Compos. Math. 113, 237–272 (1998)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Green, B., Matignon, M.: Order p automorphisms of the open disc of a p-adic field. J. Am. Math. Soc. 12, 269–303 (1999)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. IHÉS 29, 95–103 (1966)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Grothendieck, A., et al.: SGA 1: Revêtements Étales et Groupe Fondamental, corrected edition, Documents Mathématiques, vol. 3. Société mathématique de France, Paris (2003)Google Scholar
  76. 76.
    Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. J. Adv. Math. (2016). arXiv:1404.7044v3Google Scholar
  77. 77.
    Harbater, D., Obus, A., Pries, R., Stevenson, K.: Abhyankar’s conjectures in Galois theory: current status and future directions (2014). arXiv:1408.0859v1Google Scholar
  78. 78.
    Hrushovski, E., Loeser, F.: Non-Archimedean tame topology and stably dominated types. In: Annals of Mathematics Studies. Princeton University Press, Princeton (2016)CrossRefMATHGoogle Scholar
  79. 79.
    Huber, R.: Swan representations associated with rigid analytic curves. J. Reine Angew. Math. 537, 165–234 (2001)MathSciNetMATHGoogle Scholar
  80. 80.
    Illusie, L.: Complexe de de Rham–Witt et cohomologie crystalline. Ann. Sci. Éc. Norm. Sup. 12, 501–661 (1979)MathSciNetMATHGoogle Scholar
  81. 81.
    Kato, K.: Swan conductors for characters of degree one in the imperfect residue field case. In: Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987). Contemporary Mathematics, vol. 83, pp. 101–131. American Mathematical Society, Providence (1989)Google Scholar
  82. 82.
    Katz, N.M.: Nilpotent connections and the monodromy theorem: applications of a result of Turrittin. Publ. Math. IHÉS 39, 175–232 (1970)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Katz, N.M.: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Four. 36, 69–106 (1986)MathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Kedlaya, K.S.: Semistable reduction for overconvergent F-isocrystals on a curve. Math. Res. Lett. 10, 151–159 (2003)MathSciNetCrossRefMATHGoogle Scholar
  85. 85.
    Kedlaya, K.S.: A p-adic local monodromy theorem. Ann. Math. 160, 93–184 (2004)MathSciNetCrossRefMATHGoogle Scholar
  86. 86.
    Kedlaya, K.S.: Local monodromy of p-adic differential equations: an overview. Int. J. Number Theory 1, 109–154 (2005); errata posted at http://kskedlaya.org/papers
  87. 87.
    Kedlaya, K.S.: Fourier transforms and p-adic “Weil II”. Compos. Math. 142, 1426–1450 (2006)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Kedlaya, K.S.: Swan conductors for p-adic differential modules, I: a local construction. Alg. Number Theory 1, 269–300 (2007)MathSciNetMATHGoogle Scholar
  89. 89.
    Kedlaya, K.S.: Semistable reduction for overconvergent F-isocrystals, I: unipotence and logarithmic extensions. Compos. Math. 143, 1164–1212 (2007)MathSciNetMATHGoogle Scholar
  90. 90.
    Kedlaya, K.S.: Semistable reduction for overconvergent F-isocrystals, II: a valuation-theoretic approach. Compos. Math. 144, 657–672 (2008)MathSciNetMATHGoogle Scholar
  91. 91.
    Kedlaya, K.S.: Semistable reduction for overconvergent F-isocrystals, III: local semistable reduction at monomial valuations. Compos. Math. 145, 143–172 (2009)MathSciNetMATHGoogle Scholar
  92. 92.
    Kedlaya, K.S.: p-Adic Differential Equations. Cambridge University Press, Cambridge (2010); errata posted at http://kskedlaya.org/papers
  93. 93.
    Kedlaya, K.S.: Good formal structures for flat meromorphic connections, I: surfaces. Duke Math. J. 154, 343–418 (2010); erratum, Duke Math. J. 161, 733–734 (2012)Google Scholar
  94. 94.
    Kedlaya, K.S.: Good formal structures for flat meromorphic connections, II: excellent schemes. J. Am. Math. Soc. 24, 183–229 (2011)MathSciNetMATHGoogle Scholar
  95. 95.
    Kedlaya, K.S.: Semistable reduction for overconvergent F-isocrystals, IV: local semistable reduction at nonmonomial valuations. Compos. Math. 147, 467–523 (2011)MathSciNetMATHGoogle Scholar
  96. 96.
    Kedlaya, K.S.: Swan conductors for p-adic differential modules, II: global variation. J. Inst. Math. Jussieu 10, 191–224 (2011)MathSciNetMATHGoogle Scholar
  97. 97.
    Kedlaya, K.S.: Local and global structure of connections on meromorphic curves. Compos. Math. 151, 1096–1156 (2015)MathSciNetCrossRefMATHGoogle Scholar
  98. 98.
    Kedlaya, K.S., Tuitman, J.: Effective bounds for Frobenius structures. Rend. Sem. Mat. Padova 128, 7–16 (2012)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    Kedlaya, K.S., Xiao, L.: Differential modules on p-adic polyannuli. J. Inst. Math. Jussieu 9, 155–201 (2010); erratum, J. Inst. Math. Jussieu 9, 669–671 (2010)Google Scholar
  100. 100.
    Kiehl, R.: Der Endlichkeitsatz für eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie. Invent. Math. 2, 191–214 (1967)MathSciNetCrossRefMATHGoogle Scholar
  101. 101.
    Kiehl, R.: Die de Rham Kohomologie algebraischer Mannigfaltigkeiten über einem bewerteten Körper. Publ. Math. IHÉS 33, 5–20 (1967)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    Levelt, A.H.M.: Jordan decomposition for a class of singular differential operators. Ark. Mat. 13, 1–27 (1975)MathSciNetCrossRefMATHGoogle Scholar
  103. 103.
    Levelt, A.H.M., van den Essen, A.R.P.: Irregular Singularities in Several Variables. Memoirs of the American Mathematical Society, vol. 40 (270). American Mathematical Society, Providence (1982)Google Scholar
  104. 104.
    Loday-Richaud, M.: Stokes phenomenon, multisummability and differential Galois groups. Ann. Inst. Four. (Grenoble) 44, 849–906 (1994)Google Scholar
  105. 105.
    Loday-Richaud, M.: Solutions formelles des systèmes différentiels linéaires méromorphes et sommation. Expo. Math. 13, 116–162 (1995)MathSciNetMATHGoogle Scholar
  106. 106.
    Lutz, E.: Sur l’équation y 2 = x 3 + Ax + B sur les corps p-adiques. J. Reine Angew. Math. 177, 238–247 (1937)Google Scholar
  107. 107.
    Majima, H.: Asymptotic Analysis for Integrable Connections with Irregular Singular Points. Lecture Notes in Mathematics, vol. 1075. Springer, Berlin (1984)Google Scholar
  108. 108.
    Malgrange, B.: Sur les points singuliers des équations différentielles. Enseign. Math. 20, 147–176 (1974)MathSciNetMATHGoogle Scholar
  109. 109.
    Malgrange, B.: Connexions méromorphes 2: Le réseau canonique. Invent. Math. 124, 367–387 (1996)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Manjra, S.: A note on non-Robba p-adic differential equations. Proc. Jpn. Acad. Ser. A 87, 40–43 (2011)MathSciNetCrossRefMATHGoogle Scholar
  111. 111.
    Marmora, A.: Irrégularité et conducteur de Swan p-adiques. Doc. Math. 9, 413–433 (2004)MathSciNetMATHGoogle Scholar
  112. 112.
    Matsuda, S.: Local indices of p-adic differential operators corresponding to Artin-Schreier-Witt coverings. Duke Math. J. 77, 607–625 (1995)MathSciNetCrossRefMATHGoogle Scholar
  113. 113.
    Matsuda, S.: Katz correspondence for quasi-unipotent overconvergent isocrystals. Compos. Math. 134, 1–34 (2002)MathSciNetCrossRefMATHGoogle Scholar
  114. 114.
    Matsuda, S.: Conjecture on Abbes-Saito filtration and Christol-Mebkhout filtration. In: Geometric Aspects of Dwork Theory, vol. II, pp. 845–856. de Gruyter, Berlin (2004)Google Scholar
  115. 115.
    Mebkhout, Z.: Le théorème de comparaison entre cohomologies de de Rham d’une variété algébrique complexe et le théorème d’existence de Riemann. Publ. Math. IHÉS 69, 47–89 (1989)MathSciNetCrossRefMATHGoogle Scholar
  116. 116.
    Mebkhout, Z.: Analogue p-adique du théorème de Turrittin et le théorème de la monodromie p-adique. Invent. Math. 148, 319–351 (2002)MathSciNetCrossRefMATHGoogle Scholar
  117. 117.
    Mézard, A., Romagny, M., Tossici, D.: Sekiguchi-Suwa theory revisited. J. Théor. Nombres Bordeaux 26, 163–200 (2014)MathSciNetCrossRefMATHGoogle Scholar
  118. 118.
    Mochizuki, T.: Good formal structure for meromorphic flat connections on smooth projective surfaces. In: Algebraic Analysis and Around. Advanced Studies in Pure Mathematics, vol. 54, pp. 223–253. Mathematical Society of Japan, Tokyo (2009)Google Scholar
  119. 119.
    Mochizuki, T.: Wild harmonic bundles and wild pure twistor D-modules. Astérisque 340 (2011)Google Scholar
  120. 120.
    Mochizuki, T.: The Stokes structure of a good meromorphic flat bundle. J. Inst. Math. Jussieu 10, 675–712 (2011)MathSciNetCrossRefMATHGoogle Scholar
  121. 121.
    Obus, A.: The (local) lifting problem for curves. In: Galois-Teichmüller Theory and Arithmetic Geometry. Advanced Studies in Pure Mathematics, vol. 63, pp. 359–412. Mathematical Society of Japan, Tokyo (2012)Google Scholar
  122. 122.
    Obus, A.: A generalization of the Oort conjecture (2015). arXiv:1502.07623v1Google Scholar
  123. 123.
    Obus, A., Wewers, S.: Cyclic extensions and the local lifting problem. Ann. Math. 180, 233–284 (2014)MathSciNetCrossRefMATHGoogle Scholar
  124. 124.
    Ohkubo, S.: A note on logarithmic growth Newton polygons of p-adic differential equations. Int. Math. Res. Notices (2014). Article ID rnu017Google Scholar
  125. 125.
    Ohkubo, S.: On differential modules associated to de Rham representations in the imperfect residue field case (2015). arXiv:1307.8110v4Google Scholar
  126. 126.
    Ohkubo, S.: On the rationality and continuity of logarithmic growth filtration of solutions of p-adic differential equations (2015). arXiv:1502.03804v2Google Scholar
  127. 127.
    Oort, F.: Lifting algebraic curves, abelian varieties, and their endomorphisms to characteristic zero. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). Proc. Symp. Pure Math., vol. 46, pp. 165–195. American Mathematical Society, Providence, RI (1987)Google Scholar
  128. 128.
    Oort, F., Sekiguchi, T., Suwa, N.: On the deformation of Artin-Schreier to Kummer. Ann. Scient. Éc. Norm. Sup. 22, 345–375 (1989)MathSciNetMATHGoogle Scholar
  129. 129.
    Pagot, G.: \(\mathbb{F}_{p}\)-espaces vectoriels de formes différentielles logarithmiques sur la droite projective. J. Number Theory 97, 58–94 (2002)MathSciNetCrossRefMATHGoogle Scholar
  130. 130.
    Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16, 543–556 (2009)MathSciNetCrossRefMATHGoogle Scholar
  131. 131.
    Poineau, J.: Les espaces de Berkovich sont angéliques. Bull. Soc. Math. France 141, 267–297 (2013)MathSciNetMATHGoogle Scholar
  132. 132.
    Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation II: continuity and finiteness on Berkovich curves (2012). arXiv:1209.3663v1Google Scholar
  133. 133.
    Poineau, J., Pulita, A.: Continuity and finiteness of the radius of convergence of a p-adic differential equation via potential theory (2012). arXiv:1209.6276v1Google Scholar
  134. 134.
    Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation III: global decomposition and controlling graphs (2013). arXiv:1308.0859v1Google Scholar
  135. 135.
    Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation IV: local and global index theorems (2014). arXiv:1309.3940v2Google Scholar
  136. 136.
    Pons, E.: Polygone de convergence d’un module différentiel p-adique. C.R. Acad. Sci. Paris Sér. I Math. 327, 77–80 (1998)Google Scholar
  137. 137.
    Pons, E.: Modules différentiels non solubles. Rayons de convergence et indices. Rend. Sem. Mat. Univ. Padova 103, 21–45 (2000)MathSciNetGoogle Scholar
  138. 138.
    Pop, F.: Lifting of curves: the Oort conjecture. Ann. Math. 180, 285–322 (2014)CrossRefMATHGoogle Scholar
  139. 139.
    Pulita, A.: Rank one solvable p-adic differential equations and finite Abelian characters via Lubin–Tate groups. Math. Ann. 337, 489–555 (2007)MathSciNetCrossRefMATHGoogle Scholar
  140. 140.
    Pulita, A.: The convergence Newton polygon of a p-adic differential equation I: affinoid domains of the Berkovich affine line (2014). arXiv:1208.5850v4Google Scholar
  141. 141.
    Pulita, A.: Équations différentielles p-adiques, mémoire d’habilitation à diriger des recherches. Univ. Montpellier (2014)Google Scholar
  142. 142.
    Robba, P.: On the index of p-adic differential operators, I. Ann. Math. 101, 280–316 (1975)MathSciNetCrossRefMATHGoogle Scholar
  143. 143.
    Robba, P.: On the index of p-adic differential operators, II. Duke Math. J. 43, 19–31 (1976)MathSciNetCrossRefMATHGoogle Scholar
  144. 144.
    Robba, P.: Lemmes de Hensel pour les opérateurs différentiels. Application a la réduction formelle des équations différentielles. Ens. Math. 26, 279–311 (1980)MathSciNetMATHGoogle Scholar
  145. 145.
    Robba, P.: On the index of p-adic differential operators, III. Application to twisted exponential sums. Astérisque 119–120, 191–266 (1984)MathSciNetGoogle Scholar
  146. 146.
    Robba, P.: Indice d’un operateur différentiel p-adique, IV: Cas des systèmes. Mesure de l’irrégularité dans un disque. Ann. Inst. Fourier, Grenoble 35, 13–55 (1985)MathSciNetCrossRefGoogle Scholar
  147. 147.
    Robba, P.: Une introduction naïve aux cohomologies de Dwork. Mém. Soc. Math. France 23, 61–105 (1986)MathSciNetMATHGoogle Scholar
  148. 148.
    Sabbah, C.: Équations différentielles à points singuliers irréguliers et phenomene de Stokes en dimension 2. Astérisque 263 (2000)Google Scholar
  149. 149.
    Sabbah, C.: Introduction to Stokes Structures. Lecture Notes in Mathematics, vol. 2060. Springer, Berlin (2013)Google Scholar
  150. 150.
    Saïdi, M.: Fake liftings of Galois covers between smooth curves. In: Galois-Teichmüller Theory and Arithmetic Geometry. Advanced Studies in Pure Mathematics, vol. 63, pp. 457–501. Mathematical Society of Japan, Tokyo (2012)Google Scholar
  151. 151.
    Sekiguchi, T., Suwa, N.: Théorie de Kummer-Artin-Schreier et applications. J. Théorie Nombres Bordeaux 7, 177–189 (1995)MathSciNetCrossRefMATHGoogle Scholar
  152. 152.
    Sekiguchi,T., Suwa, N.: On the unified Kummer-Artin-Schreier-Witt theory, Prépublications du laboratoire de Mathématiques Pures de Bordeaux, no. 111 (1999)Google Scholar
  153. 153.
    Sekiguchi, T., Suwa, N.: A note on extensions of algebraic and formal groups. IV. Kummer-Artin-Schreier-Witt theory of degree p 2. Tohoku Math. J. 53, 203–240 (2001)Google Scholar
  154. 154.
    Serre, J.-P.: Local Fields. Graduate Texts in Mathematics, vol. 67. Springer, New York (1979)Google Scholar
  155. 155.
    Singer, M., van der Put, M.: Galois Theory of Linear Differential Equations. Grundlehren der math. Wissenschaften, vol. 328. Springer, Berlin (2003)Google Scholar
  156. 156.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009)Google Scholar
  157. 157.
    Temkin, M.: Metric uniformization of morphisms of Berkovich curves (2014). arXiv:1410.6892v1Google Scholar
  158. 158.
    Thomas, L.: Ramification groups in Artin-Schreier-Witt extensions. J. Théor. Nombres Bordeaux 17, 689–720 (2005)Google Scholar
  159. 159.
    Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. PhD thesis, Université de Rennes (2005)Google Scholar
  160. 160.
    Tossici, D.: Models of \(\mu _{p^{2},K}\) over a discrete valuation ring (with an appendix by X. Caruso). J. Algebra 323, 1908–1957 (2010)Google Scholar
  161. 161.
    Tsuzuki, N.: The local index and the Swan conductor. Comp. Math. 111, 245–288 (1998)MathSciNetCrossRefMATHGoogle Scholar
  162. 162.
    Tsuzuki, N.: Finite local monodromy of overconvergent unit-root F-isocrystals on a curve. Am. J. Math. 120, 1165–1190 (1998)MathSciNetCrossRefMATHGoogle Scholar
  163. 163.
    Tsuzuki, N.: Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals. Duke Math. J. 111, 385–419 (2002)MathSciNetCrossRefMATHGoogle Scholar
  164. 164.
    Turchetti, D.: Contributions to arithmetic geometry in mixed characteristic: lifting covers of curves, non-Archimedean geometry and the -modular Weil representation. PhD thesis, Univ. de Versailles St.-Quentin (2014). Available online at http://webusers.imj-prg.fr/~daniele.turchetti/
  165. 165.
    Turrittin, H.L.: Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point. Acta Math. 93, 27–66 (1955)MathSciNetCrossRefMATHGoogle Scholar
  166. 166.
    Tyomkin, I.: Tropical geometry and correspondence theorems via toric stacks. Math. Ann. 353, 945–995 (2012)MathSciNetCrossRefMATHGoogle Scholar
  167. 167.
    Varadarajan, V.S.: Linear meromorphic differential equations: a modern point of view. Bull. Am. Math. Soc. 33, 1–42 (1996)MathSciNetCrossRefMATHGoogle Scholar
  168. 168.
    Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations, reprint of the 1976 edition. Dover, New York (1987)MATHGoogle Scholar
  169. 169.
    Waterhouse, W.: A unified Kummer-Artin-Schreier sequence. Math. Ann. 277, 447–451 (1987)MathSciNetCrossRefMATHGoogle Scholar
  170. 170.
    Werner, A.: Analytification and tropicalization over non-Archimedean fields. Simons Symposium 2015 lecture notes available at http://users.math.yale.edu/~sp547/SimonsSymposium2015.html
  171. 171.
    Xiao, L.: On ramification filtrations and p-adic differential equations, I: equal characteristic case. Alg. Number Theory 4, 969–1027 (2010)MATHGoogle Scholar
  172. 172.
    Xiao, L.: On ramification filtrations and p-adic differential equations, II: mixed characteristic case. Compos. Math. 148, 415–463 (2012)MATHGoogle Scholar
  173. 173.
    Xiao, L.: On the refined ramification filtrations in the equal characteristic case. Alg. Number Theory 6, 1579–1667 (2012)MathSciNetCrossRefMATHGoogle Scholar
  174. 174.
    Young, P.T.: Radii of convergence and index for p-adic differential operators. Trans. Am. Math. Soc. 333, 769–785 (1992)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations