Advertisement

Degeneration of Linear Series from the Tropical Point of View and Applications

  • Matthew BakerEmail author
  • David Jensen
Conference paper
Part of the Simons Symposia book series (SISY)

Abstract

We discuss linear series on tropical curves and their relation to classical algebraic geometry, describe the main techniques of the subject, and survey some of the recent major developments in the field, with an emphasis on applications to problems in Brill–Noether theory and arithmetic geometry.

Keywords

Chip firing Tropical curves Brill-Noether theory 

Notes

Acknowledgements

The authors would like to thank Omid Amini and Sam Payne for enlightening discussions, and Eric Katz and Joe Rabinoff for helpful feedback on our summary of Katz et al. [81]. They also thank Spencer Backman, Dustin Cartwright, Melody Chan, Yoav Len, and Sam Payne for their comments on an early draft of this paper.

References

  1. 1.
    Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. 48 (4), 765–809 (2015)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Agrawal, R., Musiker, G., Sotirov, V., Wei, F.: Involutions on standard Young tableaux and divisors on metric graphs. Electron. J. Comb. 20 (3) (2013)Google Scholar
  3. 3.
    Amini, O.: Reduced divisors and embeddings of tropical curves. Trans. Am. Math. Soc. 365 (9), 4851–4880 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Amini, O.: Equidistribution of Weierstrass points on curves over non-Archimedean fields. Preprint, arXiv:1412.0926v1 (2014)Google Scholar
  5. 5.
    Amini, O., Baker, M.: Linear series on metrized complexes of algebraic curves. Math. Ann. 362 (1–2), 55–106 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Amini, O., Caporaso, L.: Riemann–Roch theory for weighted graphs and tropical curves. Adv. Math. 240, 1–23 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Amini, O., Kool, F.: A spectral lower bound for the divisorial gonality of metric graphs. Preprint, arXiv:1407.5614 (2014)Google Scholar
  8. 8.
    Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta. Res. Math. Sci. 2, Art. 7, 67 (2015)Google Scholar
  9. 9.
    Amini, O., Baker, M., Brugallé, E., Rabinoff, J.: Lifting harmonic morphisms II: tropical curves and metrized complexes. Algebra Number Theory. 9 (2), 267–315 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    An, Y., Baker, M., Kuperberg, G., Shokrieh, F.: Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem. Forum Math. Sigma 2, e24, 25 (2014)Google Scholar
  11. 11.
    Arbarello, E., Ciliberto, C.: Adjoint hypersurfaces to curves in P r following Petri. In: Commutative Algebra (Trento, 1981). Lecture Notes in Pure and Applied Mathematics, vol. 84, pp. 1–21. Dekker, New York (1983)Google Scholar
  12. 12.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Volume I. Grundlehren der Mathematischen Wissenschaften, vol. 267. Springer, New York (1985)Google Scholar
  13. 13.
    Babbage, D.W.: A note on the quadrics through a canonical curve. J. Lond. Math. Soc. 14, 310–315 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Backman, S.: Infinite reduction of divisors on metric graphs. European J. Comb. 35, 67–74 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Backman, S.: Riemann-Roch theory for graph orientations. Preprint, arXiv:1401.3309 (2014)Google Scholar
  16. 16.
    Baker, M.: An introduction to Berkovich analytic spaces and non-Archimedean potential theory on curves. In: p-Adic Geometry. University Lecture Series, vol. 45, pp. 123–174. American Mathematical Society, Providence, RI (2008)Google Scholar
  17. 17.
    Baker, M.: Specialization of linear systems from curves to graphs. Algebra Number Theory 2 (6), 613–653 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Baker, M., Faber, X.: Metric properties of the tropical Abel-Jacobi map. J. Algebraic Combin. 33 (3), 349–381 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Baker, M., Norine, S.: Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215 (2), 766–788 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Baker, M., Rabinoff, J.: The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves. Int. Math. Res. Not. 2015 (16), 7436–7472 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line. Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence, RI (2010)Google Scholar
  22. 22.
    Baker, M., Shokrieh, F.: Chip-firing games, potential theory on graphs, and spanning trees. J. Comb. Theory Ser. A 120 (1), 164–182 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Baker, M., Wang, Y.: The Bernardi process and torsor structures on spanning trees. Preprint, arXiv:1406.1584 (2014)Google Scholar
  24. 24.
    Baker, M., Payne, S., Rabinoff, J.: Nonarchimedean geometry, tropicalization, and metrics on curves. Algebraic Geom. Preprint, arXiv:1104.0320v3 (2011, to appear)Google Scholar
  25. 25.
    Baker, M., Payne, S., Rabinoff, J.: On the structure of non-Archimedean analytic curves. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 93–121. American Mathematical Society, Providence, RI (2013)Google Scholar
  26. 26.
    Baker, M., Len, Y., Morrison, R., Pflueger, N., Ren, Q.: Bitangents of tropical plane quartic curves. Preprint, arXiv:1404.7568 (2014)Google Scholar
  27. 27.
    Ballico, E., Ellia, P.: The maximal rank conjecture for nonspecial curves in P 3. Invent. Math. 79 (3), 541–555 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Bayer, D., Eisenbud, D.: Graph curves. Adv. Math. 86 (1), 1–40 (1991) With an appendix by Sung Won Park.Google Scholar
  29. 29.
    Berkovich, V.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence, RI (1990)Google Scholar
  30. 30.
    Biggs, N.L.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9 (1), 25–45 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226 (3), 2546–2586 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Caporaso, L.: Néron models and compactified Picard schemes over the moduli stack of stable curves. Am. J. Math. 130 (1), 1–47 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Caporaso, L.: Algebraic and tropical curves: comparing their moduli spaces. In: Farkas and Morrison (eds.) Handbook of Moduli. Adv. Lect. Math. (ALM), vol. 24, pp. 119–160. Int. Press, Somerville (2013)Google Scholar
  34. 34.
    Caporaso, L.: Algebraic and combinatorial Brill-Noether theory. In: Compact Moduli Spaces and Vector Bundles. Contemporary Mathematics, vol. 564, pp. 69–85. American Mathematical Society, Providence, RI (2012)Google Scholar
  35. 35.
    Caporaso, L.: Rank of divisors on graphs: an algebro-geometric analysis. In: A Celebration of Algebraic Geometry. Clay Mathematics Proceedings, vol. 18, pp. 45–64. American Mathematical Society, Providence, RI (2013)Google Scholar
  36. 36.
    Caporaso, L., Viviani, F.: Torelli theorem for graphs and tropical curves. Duke Math. J. 153 (1), 129–171 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Caporaso, L., Harris, J., Mazur, B.: Uniformity of rational points. J. Am. Math. Soc. 10 (1), 1–35 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Caporaso, L., Len, Y., Melo, M.: Algebraic and combinatorial rank of divisors on finite graphs. Preprint, arXiv:1401:5730v2 (2014)Google Scholar
  39. 39.
    Cartwright, D.: Tropical complexes. Preprint, arXiv:1308.3813 (2013)Google Scholar
  40. 40.
    Cartwright, D.: Lifting matroid divisors on tropical curves. Preprint, arXiv:1502.03759 (2015)Google Scholar
  41. 41.
    Cartwright, D., Jensen, D., Payne, S.: Lifting divisors on a generic chain of loops. Canad. Math. Bull. 58 (2), 250–262 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Cartwright, D., Dudzik, A., Manjunath, M., Yao, Y.: Embeddings and immersions of tropical curves. Preprint, arXiv:1409.7372v1 (2014)Google Scholar
  43. 43.
    Castelnuovo, G., Enriques, F., Severi, F.: Max Noether. Math. Ann. 93 (1), 161–181 (1925)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Chambert-Loir, A., Ducros, A.: Formes différentielles réelles et courants sur les espaces de Berkovich. Preprint, arXiv:1204.6277 (2012)Google Scholar
  45. 45.
    Chan, M.: Tropical hyperelliptic curves. J. Algebraic Combin. 37 (2), 331–359 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Chan, M., Jiradilok, P.: Theta characteristics of tropical K 4 curves. Preprint, arXiv:1503:05776v1 (2015)Google Scholar
  47. 47.
    Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57 (3), 829–858 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Cools, F., Draisma, J., Payne, S., Robeva, E.: A tropical proof of the Brill-Noether theorem. Adv. Math. 230 (2), 759–776 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Cornelissen, G., Fumiharu, K., Kool, J.: A combinatorial Li–Yau inequality and rational points on curves. Math. Ann. 361 (1–2), 211–258 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Coleman, R.F.: Effective Chabauty. Duke Math. J. 52 (3), 765–770 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Conrad, B.: Several approaches to non-Archimedean geometry. In: p-Adic Geometry. University Lecture Series, vol. 45, pp. 9–63. American Mathematical Society, Providence, RI (2008)Google Scholar
  52. 52.
    Coppens, M.: Clifford’s theorem for graphs. Preprint, arXiv:1304.6101 (2014)Google Scholar
  53. 53.
    Coppens, M.: Free divisors on metric graphs. Preprint, arXiv:1410.3114 (2014)Google Scholar
  54. 54.
    Deveau, A., Jensen, D., Kainic, J., Mitropolsky, D.: Gonality of random graphs. Preprint, arXiv:1409.5688 (2014)Google Scholar
  55. 55.
    Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64 (14), 1613–1616 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Dhar, D., Ruelle, P., Sen, S., Verma, D.-N.: Algebraic aspects of Abelian sandpile models. J. Phys. A 28 (4), 805–831 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Eisenbud, D., Harris, J.: A simpler proof of the Gieseker-Petri theorem on special divisors. Invent. Math. 74 (2), 269–280 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Eisenbud, D., Harris, J.: Limit linear series: basic theory. Invent. Math. 85 (2), 337–371 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Eisenbud, D., Harris, J.: Existence, decomposition, and limits of certain Weierstrass points. Invent. Math. 87 (3), 495–515 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Esteves, E., Medeiros, N.: Limits of Weierstrass points in regular smoothings of curves with two components. C. R. Acad. Sci. Paris Sér. I Math. 330 (10), 873–878 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Farkas, G.: Koszul divisors on moduli spaces of curves. Am. J. Math. 131 (3), 819–867 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Foster, T., Gross, P., Payne, S.: Limits of tropicalizations. Israel J. Math. 201 (2), 835–846 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Gathmann, A., Kerber, M.: A Riemann-Roch theorem in tropical geometry. Math. Z. 259 (1), 217–230 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Gathmann, A., Kerber, M., Markwig, H.: Tropical fans and the moduli spaces of tropical curves. Compos. Math. 145 (1), 173–195 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    Gieseker, D.: Stable curves and special divisors: Petri’s conjecture. Invent. Math. 66 (2), 251–275 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Griffiths, P., Harris, J.: On the variety of special linear systems on a general algebraic curve. Duke Math. J. 47 (1), 233–272 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Gubler, W.: Tropical varieties for non-Archimedean analytic spaces. Invent. Math. 169 (2), 321–376 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Gubler, W.: Non-Archimedean canonical measures on abelian varieties. Compos. Math. 146 (3), 683–730 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Gubler, W., Künnemann, K.: A tropical approach to non-Archimedean Arakelov theory. Preprint, arXiv:1406.7637 (2014)Google Scholar
  70. 70.
    Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. Preprint, arXiv:1404.7044 (2014)Google Scholar
  71. 71.
    Harris, J.: Curves in Projective Space. Séminaire de Mathématiques Supérieures, vol. 85 Presses de l’Université de Montréal, Montreal, Que (1982) With the collaboration of David EisenbudGoogle Scholar
  72. 72.
    Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. Springer, New York (1998)Google Scholar
  73. 73.
    Haase, C., Musiker, G., Yu, J.: Linear systems on tropical curves. Math. Z. 270 (3–4), 1111–1140 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Heinz, N.: Admissible metrics for line bundles on curves and abelian varieties over non-Archimedean local fields. Arch. Math. (Basel) 82 (2), 128–139 (2004)Google Scholar
  75. 75.
    Hladký, J., Král’, D., Norine, S.: Rank of divisors on tropical curves. J. Combin. Theory Ser. A 120 (7), 1521–1538 (2013)Google Scholar
  76. 76.
    Holroyd, A., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.: Chip-firing and rotor-routing on directed graphs. In: In and Out of Equilibrium 2. Progress in Probability, vol. 60, pp. 331–364. Birkhäuser, Basel (2008)Google Scholar
  77. 77.
    Jensen, D.: The locus of Brill-Noether general graphs is not dense. Preprint, arXiv:1405.6338 (2014)Google Scholar
  78. 78.
    Jensen, D., Payne, S.: Tropical independence I: Shapes of divisors and a proof of the Gieseker-Petri theorem. Algebra Number Theory 8 (9), 2043–2066 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Jensen, D., Payne, S.: Tropical independence II: the maximal rank conjecture for quadrics. Algebra Number Theory. http://arxiv.org/abs/1505.05460
  80. 80.
    Katz, E., Zureick-Brown, D.: The Chabauty-Coleman bound at a prime of bad reduction and Clifford bounds for geometric rank functions. Compos. Math. 149 (11), 1818–1838 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Katz, E., Rabinoff, J., Zureick-Brown, D.: Uniform bounds for the number of rational points on curves of small Mordell-Weil rank. Duke Math J. arXiv:1504.00694 (2015)Google Scholar
  82. 82.
    Kawaguchi, S., Yamaki, K.: Algebraic rank of hyperelliptic graphs and graphs of genus 3. Preprint, arXiv:1401:3935 (2014)Google Scholar
  83. 83.
    Kawaguchi, S., Yamaki, K.: Rank of divisors on hyperelliptic curves and graphs under specialization. Preprint, arXiv:1304.6979v3 (2014)Google Scholar
  84. 84.
    Kempf, G.: Schubert Methods with an Application to Algebraic Curves. Publ. Math. Centrum (1971)zbMATHGoogle Scholar
  85. 85.
    Kiss, V., Tóthmérész, L.: Chip-firing games on Eulerian digraphs and NP-hardness of computing the rank of a divisor on a graph. Preprint, arXiv:1407.6598 (2014)Google Scholar
  86. 86.
    Kleiman, S.L., Laksov, D.: Another proof of the existence of special divisors. Acta Math. 132, 163–176 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    Kozlov, D.: The topology of moduli spaces of tropical curves with marked points. Asian J. Math. 13 (3), 385–403 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Lafforgue, L.: Chirurgie des grassmanniennes. CRM Monograph Series. vol. 19. American Mathematical Society, Providence, RI (2003)Google Scholar
  89. 89.
    Lazarsfeld, R.: Brill-Noether-Petri without degenerations. J. Differential Geom. 23 (3), 299–307 (1986)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Len, Y.: The Brill-Noether rank of a tropical curve. Preprint, arXiv:1209.6309v1 (2012)Google Scholar
  91. 91.
    Len, Y.L A note on algebraic rank, matroids, and metrized complexes. Preprint, arXiv:1401:8156 (2014)Google Scholar
  92. 92.
    Levine, L., Propp, J.: What is \(\ldots\) a sandpile? Not. Am. Math. Soc. 57 (8), 976–979 (2010)MathSciNetzbMATHGoogle Scholar
  93. 93.
    Lim, C.-M., Payne, S., Potashnik, N.: A note on Brill-Noether theory and rank-determining sets for metric graphs. Int. Math. Res. Not. IMRN 23:5484–5504 (2012)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002) Translated from the French by Reinie Erné, Oxford Science PublicationsGoogle Scholar
  95. 95.
    Lorenzini, D., Tucker, T.J.: Thue equations and the method of Chabauty-Coleman. Invent. Math. 148 (1), 47–77 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  96. 96.
    Luo, Y.: Rank-determining sets of metric graphs. J. Combin. Theory Ser. A 118, 1775–1793 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    Luo, Y., Manjunath, M.: Smoothing of limit linear series of rank one on saturated metrized complexes of algebraic curves. Preprint, arXiv:1411.2325 (2014)Google Scholar
  98. 98.
    Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161, pp. xii+363. American Mathematical Society, Providence (2015)Google Scholar
  99. 99.
    McCallum, W., Poonen, B.: The method of Chabauty and Coleman. In: Explicit Methods in Number Theory. Panorama Synthèses, vol. 36 pp. 99–117. Sociëtë Mathëmatique de France, Paris (2012)Google Scholar
  100. 100.
    Merel, L.: Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1–3), 437–449 (1996)MathSciNetCrossRefGoogle Scholar
  101. 101.
    Mikhalkin, G., Zharkov, I.: Tropical curves, their Jacobians and theta functions. In: Curves and Abelian Varieties. Contemporary Mathematics, pp. 203–230, vol. 465. American Mathematical Society, Providence, RI (2008)Google Scholar
  102. 102.
    Mumford, D.: An analytic construction of degenerating abelian varieties over complete rings. Compositio Math. 24, 239–272 (1972)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Neeman, A.: The distribution of Weierstrass points on a compact Riemann surface. Ann. Math. (2) 120 (2), 317–328 (1984)Google Scholar
  104. 104.
    Nicaise, J.: Singular cohomology of the analytic Milnor fiber, and mixed Hodge structure on the nearby cohomology. J. Algebraic Geom. 20 (2), 199–237 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  105. 105.
    Noether, M.: Zur Grundlegung der Theorie der algebraische raumcurven. J. Reine Angew. Math. 93, 271–318 (1882)MathSciNetGoogle Scholar
  106. 106.
    Ogg, A.P.: On the Weierstrass points of X 0(N). Ill. J. Math. 22 (1), 31–35 (1978)MathSciNetzbMATHGoogle Scholar
  107. 107.
    Osserman, B.: Limit linear series for curves not of compact type. Preprint, arXiv:1406.6699 (2014)Google Scholar
  108. 108.
    Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16 (3), 543–556 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  109. 109.
    Perkinson, D., Perlman, J., Wilmes, J.: Primer for the algebraic geometry of sandpiles. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 211–256. American Mathematical Society, Providence, RI (2013)Google Scholar
  110. 110.
    Rabinoff, J.: Tropical analytic geometry, Newton polygons, and tropical intersections. Adv. Math. 229 (6), 3192–3255 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  111. 111.
    Raynaud, M.: Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math. (38 ), 27–76 (1970)Google Scholar
  112. 112.
    Severi, F.: Sulla classificazione delle curve algebriche e sul teorema di esistenza di Riemann. Rend. R. Acc. Naz. Lincei 24 (5), 887–888 (1915)zbMATHGoogle Scholar
  113. 113.
    Stoll, M.: Independence of rational points on twists of a given curve. Compos. Math. 142 (5), 1201–1214 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  114. 114.
    Stoll, M.: Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank. J. Eur. Math. Soc. arXiv:1307.1773v4 (2013)Google Scholar
  115. 115.
    Teixidor i Bigas, M.: Injectivity of the symmetric map for line bundles. Manuscripta Math. 112 (4), 511–517 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  116. 116.
    Thuillier, A.: Théorie du potentiel sur ler courbes en géométrie analytique non archimédienne. Applications à la theéorie d’Arakelov. Ph.D. thesis, University of Rennes (2005)Google Scholar
  117. 117.
    Thuillier, A.: Géométrie toroïdale et géométrie analytique non archimédienne. Manuscripta Math. 123 (4), 381–451 (2007)MathSciNetCrossRefGoogle Scholar
  118. 118.
    Viviani, F.: Tropicalizing vs. compactifying the Torelli morphism. In: Tropical and Non-Archimedean Geometry. Contemporary Mathematics, vol. 605, pp. 181–210. American Mathematical Society, Providence, RI (2013)Google Scholar
  119. 119.
    Voisin, C.: Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri. Acta Math. 168 (3–4), 249–272 (1992)MathSciNetCrossRefGoogle Scholar
  120. 120.
    Zhang, S.: Admissible pairing on a curve. Invent. Math. 112 (1), 171–193 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonUSA

Personalised recommendations