Advertisement

Assessment of Tissue Injury in Severe Brain Trauma

  • Christophe Maggia
  • Senan Doyle
  • Florence Forbes
  • Olivier Heck
  • Irène Troprès
  • Corentin Berthet
  • Yann Teyssier
  • Lionel Velly
  • Jean-François Payen
  • Michel Dojat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)

Abstract

We report our methodological developments to investigate, in a multi-center study using mean diffusivity, the tissue damage caused by a severe traumatic brain injury (GSC \(<9\)) in the 10 days post-event. To assess the diffuse aspect of the injury, we fuse several atlases to parcel cortical, subcortical and WM structures into well identified regions where MD values are computed and compared to normative values. We used P-LOCUS to provide brain tissue segmentation and exclude voxels labeled as CSF, ventricles and hemorrhagic lesion and then automatically detect the lesion load. Preliminary results demonstrate that our method is coherent with expert opinion in the identification of lesions. We outline the challenges posed in automatic analysis for TBI.

Keywords

Traumatic Brain Injury Apparent Diffusion Coefficient Diffusion Tensor Imaging Mean Diffusivity Severe Traumatic Brain Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Grenoble MRI facility IRMaGe was partly funded by the French program Investissement d\(^{\prime }\) avenir run by the Agence Nationale pour la Recherche; grant Infrastructure d\(^{\prime }\) avenir en Biologie Santé - ANR-11-INBS-0006. Research funded by French ministry of research and education under the Projet Hospitalier de Recherche Clinique grant OXY-TC to JFP.

References

  1. 1.
    Spiotta, A.M., Stiefel, M.F., Gracias, V.H., et al.: Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J. Neurosurg. 113(3), 571–580 (2010)CrossRefGoogle Scholar
  2. 2.
    Green, J.A., Pellegrini, D.C., Vanderkolk, W.E., et al.: Goal directed brain tissue oxygen monitoring versus conventional management in traumatic brain injury: an analysis of in hospital recovery. Neurocrit. Care 18(1), 20–25 (2013)CrossRefGoogle Scholar
  3. 3.
    Davenport, N.D., Lim, K.O., Armstrong, M.T., Sponheim, S.R.: Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage 59(3), 2017–2024 (2012)CrossRefGoogle Scholar
  4. 4.
    Narayana, P.A., Yu, X., Hasan, K.M., et al.: Multi-modal mri of mild traumatic brain injury. Neuroimage Clin. 7, 87–97 (2015)CrossRefGoogle Scholar
  5. 5.
    Yuh, E.L., Mukherjee, P., Lingsma, H.F., et al.: Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann. Neurol. 73(2), 224–235 (2013)CrossRefGoogle Scholar
  6. 6.
    Galanaud, D., Perlbarg, V., Gupta, R., et al.: Assessment of white matter injury and outcome in severe brain trauma: a prospective multicenter cohort. Anesthesiology 117(6), 1300–1310 (2012)CrossRefGoogle Scholar
  7. 7.
    Cunningham, A.S., Salvador, R., Coles, J.P., et al.: Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128(Pt 8), 1931–1942 (2005)CrossRefGoogle Scholar
  8. 8.
    Shenton, M.E., Hamoda, H.M., Schneiderman, J.S., et al.: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6(2), 137–192 (2012)CrossRefGoogle Scholar
  9. 9.
    Bigler, E.D., Wilde, E.A.: Quantitative neuroimaging and the prediction of rehabilitation outcome following traumatic brain injury. Front. Hum. Neurosci. 4, 228 (2010)CrossRefGoogle Scholar
  10. 10.
    Kasahara, K., Hashimoto, K., Abo, M., Senoo, A.: Voxel- and atlas-based analysis of diffusion tensor imaging may reveal focal axonal injuries in mild traumatic brain injury - comparison with diffuse axonal injury. Magn. Reson. Imaging 30(4), 496–505 (2012)CrossRefGoogle Scholar
  11. 11.
    Newcombe, V.F., Correia, M.M., Ledig, C., et al.: Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following tbi: a diffusion tensor imaging study. Neurorehabil. Neural Repair 30(1), 49–62 (2016)CrossRefGoogle Scholar
  12. 12.
    Sidaros, A., Skimminge, A., Liptrot, M.G., et al.: Long-term global and regional brain volume changes following severe traumatic brain injury: a longitudinal study with clinical correlates. Neuroimage 44(1), 1–8 (2009)CrossRefGoogle Scholar
  13. 13.
    Strangman, G.E., O’Neil-Pirozzi, T.M., Supelana, C., et al.: Regional brain morphometry predicts memory rehabilitation outcome after traumatic brain injury. Front. Hum. Neurosci. 4, 182 (2010)CrossRefGoogle Scholar
  14. 14.
    Pasco, A., Ter Minassian, A., Chapon, C., et al.: Dynamics of cerebral edema and the apparent diffusion coefficient of water changes in patients with severe traumatic brain injury. a prospective mri study. Eur. Radiol. 16(7), 1501–1508 (2006)CrossRefGoogle Scholar
  15. 15.
    Irimia, A., Chambers, M.C., Alger, J.R., et al.: Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of mr volumes. J. Neurotrauma 28(11), 2287–2306 (2011)CrossRefGoogle Scholar
  16. 16.
    Hasan, K.M., Wilde, E.A., Miller, E.R., et al.: Serial atlas-based diffusion tensor imaging study of uncomplicated mild traumatic brain injury in adults. J. Neurotrauma 31(5), 466–475 (2014)CrossRefGoogle Scholar
  17. 17.
    Ledig, C., Heckemann, R.A., Hammers, A., et al.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21(1), 40–58 (2015)CrossRefGoogle Scholar
  18. 18.
    Doyle, S., Forbes, F., Dojat, M.: P-locus, a complete suite for brain scan segmentation. In: 9h IEEE International Symposium on Biomedical Imaging (ISBI) (2012)Google Scholar
  19. 19.
    Manjon, J.V., Coupe, P., Concha, L., Buades, A., Collins, D.L., Robles, M.: Diffusion weighted image denoising using overcomplete local pca. PLOS One 8(9), e73021 (2013)CrossRefGoogle Scholar
  20. 20.
    Forbes, F., Doyle, S., Garcia-Lorenzo, D., Barillot, C., Dojat, M.: A weighted Multi-sequence Markov model for brain lesion segmentation. In: The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 225–232 (2010)Google Scholar
  21. 21.
    Warfield, S.K., Zou, K.H., Wells, W.M.: Validation of image segmentation by estimating rater bias and variance. Philos. Trans. A Math. Phys. Eng. Sci. 366(1874), 2361–2375 (2008)CrossRefGoogle Scholar
  22. 22.
    Kim, N., Branch, C.A., Kim, M., Lipton, M.L.: Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. PLoS One 8(3), e59382 (2013)CrossRefGoogle Scholar
  23. 23.
    Mirzaalian, H., de Pierrefeu, A., Savadjiev, P., Pasternak, S., Bouix, S., Kubicki, M., Westin, C., Shenton, M., Rathi, Y.: Harmonizing diffusion mri data across multiple sites and scanners. Med. Image Comput. Comput. Assist. Interv. 18(Pt 2), 12–19 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christophe Maggia
    • 1
    • 2
  • Senan Doyle
    • 3
  • Florence Forbes
    • 4
  • Olivier Heck
    • 5
  • Irène Troprès
    • 1
    • 5
    • 6
    • 7
  • Corentin Berthet
    • 5
  • Yann Teyssier
    • 5
  • Lionel Velly
    • 8
  • Jean-François Payen
    • 1
    • 2
    • 5
  • Michel Dojat
    • 1
    • 2
  1. 1.Grenoble Institut des Neurosciences, GINUniv. Grenoble AlpesGrenobleFrance
  2. 2.INSERM, U1216GrenobleFrance
  3. 3.PixylGrenobleFrance
  4. 4.INRIA Grenoble, LJKGrenobleFrance
  5. 5.CHU de GrenobleGrenobleFrance
  6. 6.CNRS, UMR 3552GrenobleFrance
  7. 7.INSERM, US 017GrenobleFrance
  8. 8.Hôpital de la TimoneMarseilleFrance

Personalised recommendations