Fiber Tracking in Traumatic Brain Injury: Comparison of 9 Tractography Algorithms

  • Emily L. DennisEmail author
  • Gautam Prasad
  • Madelaine Daianu
  • Liang Zhan
  • Talin Babikian
  • Claudia Kernan
  • Richard Mink
  • Christopher Babbitt
  • Jeffrey Johnson
  • Christopher C. Giza
  • Robert F. Asarnow
  • Paul M. Thompson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)


Traumatic brain injury (TBI) can cause widespread and long-lasting damage to white matter. Diffusion weighted imaging methods are uniquely sensitive to this disruption. Even so, traumatic injury often disrupts brain morphology as well, complicating the analysis of brain integrity and connectivity, which are typically evaluated with tractography methods optimized for analyzing normal healthy brains. To understand which fiber tracking methods show promise for analysis of TBI, we tested 9 different tractography algorithms for their classification accuracy and their ability to identify vulnerable areas as candidates for longitudinal follow-up in pediatric TBI participants and matched controls. Deterministic tractography models yielded the highest classification accuracies, but their limitations in areas of extensive fiber crossing suggested that they generated poor candidates for longitudinal follow-up. Probabilistic methods, including a method based on the Hough transform, yielded slightly lower accuracy, but generated follow-up candidate connections more coherent with the known neuropathology of TBI.


Traumatic Brain Injury Fractional Anisotropy Traumatic Brain Injury Patient Diffuse Axonal Injury Connectivity Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the NICHDS (R01 HD061504). ELD, YJ, and PT are also supported by NIH grants to PT: U54 EB020403, R01 EB008432, R01 AG040060, and R01 NS080655. CCG is supported by the UCLA BIRC, NS027544, NS05489, Child Neurology Foundation, and the Jonathan Drown Foundation. Scanning was supported by the Staglin IMHRO Center for Cognitive Neuroscience. We gratefully acknowledge the contributions of Alma Martinez and Alma Ramirez in assisting with participant recruitment and study coordination. Finally, the authors thank the participants and their families for contributing their time to this study.


  1. 1.
    Xu, J., Rasmussen, I.-A., Lagopoulos, J., Håberg, A.: Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J. Neurotrauma 24, 753–765 (2007)CrossRefGoogle Scholar
  2. 2.
    Jin, Y., Shi, Y., Zhan, L., Gutman, B., de Zubicaray, G.I., McMahon, K.L., Wright, M.J., Toga, A.W., Thompson, P.M.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. NeuroImage 100, 75–90 (2014)CrossRefGoogle Scholar
  3. 3.
    Jin, Y., Shi, Y., Zhan, L., de Zubicaray, G.I., McMahon, K.L., Martin, N.G., Wright, M.J., Thompson, P.M.: Labeling white matter tracts in HARDI by fusing multiple tract atlases with applications to genetics. In: 10th Proceedings of the IEEE International Symposium Biomed Imaging, pp. 512–515 (2013)Google Scholar
  4. 4.
    Dennis, E.L., Jin, Y., Villalon-Reina, J., Zhan, L., Kernan, C., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C.: White matter disruption in moderate/severe pediatric traumatic brain injury: advanced tract-based analyses. NeuroImage: Clinical 7, 493–505 (2015)CrossRefGoogle Scholar
  5. 5.
    Dennis, E.L., Ellis, M.U., Marion, S.D., Jin, Y., Kernan, C., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C., Thompson, P.M., Asarnow, R.F.: Callosal function in pediatric traumatic brain injury linked to disrupted white matter integrity. J. Neurosci. 35, 10202–10211 (2015)CrossRefGoogle Scholar
  6. 6.
    Dennis, E.L., Jin, Y., Kernan, C.L., Babikian, T., Mink, R., Babbitt, C., Johnson, J., Giza, C.C., Asarnow, R.F., Thompson, P.M.: White matter integrity in traumatic brain injury: effects of permissible fiber turning angle. In: 12th Proceedings IEEE International Symposium Biomed Imaging, pp. 930–933 (2015)Google Scholar
  7. 7.
    Zhan, L., Zhou, J., Wang, Y., Jin, Y., Jahanshad, N., Prasad, G., Nir, T.M., Leonardo, C.D., Ye, J., Thompson, P.M., for The Alzheimer’s Disease Neuroimaging, I.: Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease. Front. Aging Neurosci. 7, 48 (2015)Google Scholar
  8. 8.
    Zhan, L., Jahanshad, N., Jin, Y., Toga, A.W., McMahon, K.L., de Zubicaray, G., Martin, N.G., Wright, M.J., Thompson, P.M.: Brain network efficiency and topology depend on the fiber tracking method: 11 tractography algorithms compared in 536 subjects. In: 10th Proceedings of the IEEE International Symposium Biomed Imaging, pp. 1134–1137 (2013)Google Scholar
  9. 9.
    Giza, C.C., Maria, N.S., Hovda, D.A.: N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J. Neurotrauma 23, 950–961 (2006)CrossRefGoogle Scholar
  10. 10.
    Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006)CrossRefGoogle Scholar
  11. 11.
    Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.M.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 5, 1–23 (1999)Google Scholar
  12. 12.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)CrossRefGoogle Scholar
  13. 13.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., McKinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Nat. Acad. Sci. U.S.A. 96, 10422–10427 (1999)CrossRefGoogle Scholar
  14. 14.
    Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A.: White matter tractography using diffusion tensor deflection. Hum. Brain Mapp. 18, 306–321 (2003)CrossRefGoogle Scholar
  15. 15.
    Aganj, I., Lenglet, C., Jahanshad, N., Yacoub, E., Harel, N., Thompson, P.M., Sapiro, G.: A Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography. Med. Image Anal. 15, 414–425 (2011)CrossRefGoogle Scholar
  16. 16.
    Parker, G.J., Haroon, H.A., Wheeler-Kingshott, C.A.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imaging 18, 242–254 (2003)CrossRefGoogle Scholar
  17. 17.
    Wedeen, V.J., Rosene, D.L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., Kaas, J.H., Tseng, W.Y.: The geometric structure of the brain fiber pathways. Science 335, 1628–1634 (2012)CrossRefGoogle Scholar
  18. 18.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)CrossRefGoogle Scholar
  19. 19.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  20. 20.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI 14, 1137–1145 (1995)Google Scholar
  21. 21.
    De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43, 44–58 (2008)CrossRefGoogle Scholar
  22. 22.
    Hulkower, M.B., Poliak, D.B., Rosenbaum, S.B., Zimmerman, M.E., Lipton, M.L.: A decade of DTI in traumatic brain injury: 10 years and 100 articles later. AJNR 34, 2064–2074 (2013)CrossRefGoogle Scholar
  23. 23.
    Wilde, E.A., Ayoub, K.W., Bigler, E.D., Chu, Z.D., Hunter, J.V., Wu, T.C., McCauley, S.R., Levin, H.S.: Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav. 6, 404–416 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Emily L. Dennis
    • 1
    Email author
  • Gautam Prasad
    • 1
  • Madelaine Daianu
    • 1
  • Liang Zhan
    • 1
  • Talin Babikian
    • 2
  • Claudia Kernan
    • 2
  • Richard Mink
    • 3
  • Christopher Babbitt
    • 4
  • Jeffrey Johnson
    • 5
  • Christopher C. Giza
    • 6
  • Robert F. Asarnow
    • 2
    • 7
  • Paul M. Thompson
    • 1
    • 2
    • 8
  1. 1.Imaging Genetics CenterKeck USC School of MedicineMarina del ReyUSA
  2. 2.Department of Psychiatry and Biobehavioral SciencesSemel Institute for Neuroscience and Human Behavior, UCLALos AngelesUSA
  3. 3.Department of PediatricsHarbor-UCLA Medical Center and Los Angeles BioMedical Research InstituteTorranceUSA
  4. 4.Miller Children’s HospitalLong BeachUSA
  5. 5.Department of PediatricsLAC+USC Medical CenterLos AngelesUSA
  6. 6.UCLA Brain Injury Research Center, Department of Neurosurgery and Division of Pediatric NeurologyMattel Children’s HospitalLos AngelesUSA
  7. 7.Department of PsychologyUCLALos AngelesUSA
  8. 8.Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUSCLos AngelesUSA

Personalised recommendations