Parameter Learning for CRF-Based Tissue Segmentation of Brain Tumors

  • Raphael Meier
  • Venetia Karamitsou
  • Simon Habegger
  • Roland Wiest
  • Mauricio Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)

Abstract

In this work, we investigated the potential of a recently proposed parameter learning algorithm for Conditional Random Fields (CRFs). Parameters of a pairwise CRF are estimated via a stochastic subgradient descent of a max-margin learning problem. We compared the performance of our brain tumor segmentation method using parameter learning to a version using hand-tuned parameters. Preliminary results on a subset of the BRATS2015 training set show that parameter learning leads to comparable or even improved performance. In addition, we also performed experiments to study the impact of the composition of training data on the final segmentation performance. We found that models trained on mixed data sets achieve reasonable performance compared to models trained on stratified data.

Keywords

Brain tumor segmentation Structured learning Decision forest Conditional random field 

References

  1. 1.
    Wen, P.Y., Macdonald, D.R., Reardon, D.A., Cloughesy, T.F., Sorensen, A.G., et al.: Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28(11), 1963–1972 (2010)CrossRefGoogle Scholar
  2. 2.
    Reuter, M., Gerstner, E.R., Rapalino, O., et al.: Impact of MRI head placement on glioma response assessment. J. Neuro-Oncol. 118, 123–129 (2014)CrossRefGoogle Scholar
  3. 3.
    Kanaly, C.W., Ding, D., Mehta, A.I., Waller, A.F., Crocker, I., Desjardins, A., Reardon, D.A., Friedman, A.H., Bigner, D.D., Sampson, J.H.: A novel method for volumetric MRI response assessment of enhancing brain tumors. PLoS ONE 6(1), e16031 (2011)CrossRefGoogle Scholar
  4. 4.
    Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R.K., Slotboom, J., Reyes, M., Wiest, R.: Multi-modal glioblastoma segmentation: man versus machine. PLoS ONE 9(5), e96873 (2014)CrossRefGoogle Scholar
  5. 5.
    Velazquez, E.R., Meier, R., Dunn Jr., W.D., Alexander, B., Bauer, S., Gutman, D.A., Reyes, M., Aerts, H.J.W.L.: Fully automatic GBM segmentation in the TCGA-GBM dataset : prognosis and correlation with VASARI features. Nat. Sci. Rep. 5, 16822 (2015)CrossRefGoogle Scholar
  6. 6.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). In: TMI (2014)Google Scholar
  7. 7.
    Lombaert, H., Zikic, D., Criminisi, A., Ayache, N.: Laplacian forests: semantic image segmentation by guided bagging. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 496–504. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Zhao, L., Wu, W., Corso, J.J.: Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 567–575. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: Appearance-and context-sensitive features for brain tumor segmentation. In: MICCAI BRATS Challenge (2014)Google Scholar
  10. 10.
    Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Lucchi, A., Marquez-Neila, P., Becker, C., Li, Y., Smith, K., Knott, G., Fua, P.: Learning Structured Models for Segmentation of 2D and 3D Imagery. In: IEEE TMI, p. 1, March 2014Google Scholar
  12. 12.
    Taskar, B., Guestrin, C., Koller, D.: Max margin Markov networks. Neural Inf. Process. Syst. (2003)Google Scholar
  13. 13.
    Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)Google Scholar
  14. 14.
    Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision. Found. Trends Comput. Graph. Vis. 6(3–4), 185–365 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    Criminisi, A., Shotton, J.: Decision Forests for Computer Vision and Medical Image Analysis. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Ben Taskar, V., Chatalbashev, D.K., Guestrin, C.: Learning structured prediction models: a large margin approach. In: ICML (2005)Google Scholar
  18. 18.
    Ratliff, N.D., Andrew Bagnell, J., Zinkevich, M.A.: (Online) subgradient methods for structured prediction. Artif. Intell. Stat. (2007)Google Scholar
  19. 19.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear programming. IEEE TPAMI 29(8), 1436–1453 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Raphael Meier
    • 1
  • Venetia Karamitsou
    • 1
  • Simon Habegger
    • 2
    • 3
  • Roland Wiest
    • 2
    • 3
  • Mauricio Reyes
    • 1
  1. 1.Institute for Surgical Technologies and BiomechanicsUniversity of BernBernSwitzerland
  2. 2.Support Center for Advanced Neuroimaging – Institute for Diagnostic and Interventional NeuroradiologyUniversity HospitalAugustaUSA
  3. 3.University of BernBernSwitzerland

Personalised recommendations