GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines for Glioma Segmentation

  • Spyridon Bakas
  • Ke Zeng
  • Aristeidis Sotiras
  • Saima Rathore
  • Hamed Akbari
  • Bilwaj Gaonkar
  • Martin Rozycki
  • Sarthak Pati
  • Christos Davatzikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)

Abstract

We present an approach for segmenting low- and high-grade gliomas in multimodal magnetic resonance imaging volumes. The proposed approach is based on a hybrid generative-discriminative model. Firstly, a generative approach based on an Expectation-Maximization framework that incorporates a glioma growth model is used to segment the brain scans into tumor, as well as healthy tissue labels. Secondly, a gradient boosting multi-class classification scheme is used to refine tumor labels based on information from multiple patients. Lastly, a probabilistic Bayesian strategy is employed to further refine and finalize the tumor segmentation based on patient-specific intensity statistics from the multiple modalities. We evaluated our approach in 186 cases during the training phase of the BRAin Tumor Segmentation (BRATS) 2015 challenge and report promising results. During the testing phase, the algorithm was additionally evaluated in 53 unseen cases, achieving the best performance among the competing methods.

Keywords

Segmentation Brain tumor Glioma Multimodal MRI BRATS challenge Gradient boosting Expectation maximization Brain tumor growth model Probabilistic model 

References

  1. 1.
    Akbari, H., Macyszyn, L., Da, X., Wolf, R.L., Bilello, M., Verma, R., O’Rourke, D.M., Davatzikos, C.: Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273(2), 502–510 (2014)CrossRefGoogle Scholar
  2. 2.
    Bakas, S., Chatzimichail, K., Hunter, G., Labbe, B., Sidhu, P.S., Makris, D.: Fast semi-automatic segmentation of focal liver lesions in contrast-enhanced ultrasound, based on a probabilistic model. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis., 1–10 (2015). doi:10.1080/21681163.2015.1029642
  3. 3.
    Deeley, M.A., Chen, A., Datteri, R., Noble, J.H., Cmelak, A.J., Donnelly, E.F., Malcolm, A.W., Moretti, L., Jaboin, J., Niermann, K., Yang, E.S., Yu, D.S., Yei, F., Koyama, T., Ding, G.X., Dawant, B.M.: Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study. Phy. Med. Biol. 56(14), 4557–4577 (2011)CrossRefGoogle Scholar
  4. 4.
    Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5(4), 281–299 (2001)CrossRefGoogle Scholar
  5. 5.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gaonkar, B., Macyszyn, L., Bilello, M., Sadaghiani, M.S., Akbari, H., Attiah, M.A., Ali, Z.S., Da, X., Zhan, Y., O’Rourke, D., Grady, S.M., Davatzikos, C.: Automated tumor volumetry using computer-aided image segmentation. Acad. Radiol. 22(5), 653–661 (2015)CrossRefGoogle Scholar
  8. 8.
    Gooya, A., Biros, G., Davatzikos, C.: Deformable registration of glioma images using EM algorithm and diffusion reaction modeling. IEEE Trans. Med. Imaging 30(2), 375–390 (2011)CrossRefGoogle Scholar
  9. 9.
    Gooya, A., Pohl, K.M., Bilello, M., Biros, G., Davatzikos, C.: Joint segmentation and deformable registration of brain scans guided by a tumor growth model. Med. Image Comput. Comput.-Assist. Interv. 14(2), 532–540 (2011)Google Scholar
  10. 10.
    Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)CrossRefGoogle Scholar
  11. 11.
    Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)CrossRefGoogle Scholar
  13. 13.
    Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. MICCAI Brain Tumor Segmentation (BraTS) Challenge Manuscripts, pp. 18–19 (2014)Google Scholar
  14. 14.
    Kwon, D., Shinohara, R.T., Akbari, H., Davatzikos, C.: Combining generative models for multifocal glioma segmentation and registration. Med. Image Comput. Comput.-Assist. Interv. 17(1), 763–770 (2014)Google Scholar
  15. 15.
    Louis, D.N.: Molecular pathology of malignant gliomas. Annu. Rev. Pathol. - Mech. Dis. 1, 97–117 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentations. Int. J. Radiat. Oncol. - Biol. - Phy. 59(1), 300–312 (2004)CrossRefGoogle Scholar
  17. 17.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B.B., Ayache, N., Buendia, P., Collins, D.L., Cordier, N., Corso, J.J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C.R., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K.M., Jena, R., John, N.M., Konukoglu, E., Lashkari, D., Mariz, J.A., Meier, R., Pereira, S., Precup, D., Price, S.J., Riklin-Raviv, T., Reza, S.M.S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.-C., Shotton, J., Silva, C.A., Sousa, N., Subbanna, N.K., Szekely, G., Taylor, T.J., Thomas, O.M., Tustison, N.J., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). doi:10.1109/TMI.2014.2377694 CrossRefGoogle Scholar
  18. 18.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATHGoogle Scholar
  19. 19.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)CrossRefGoogle Scholar
  21. 21.
    Wen, P.Y., Kesari, S.: Malignant gliomas in adults. N. Engl. J. Med. 359(5), 492–507 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Spyridon Bakas
    • 1
  • Ke Zeng
    • 1
  • Aristeidis Sotiras
    • 1
  • Saima Rathore
    • 1
  • Hamed Akbari
    • 1
  • Bilwaj Gaonkar
    • 1
  • Martin Rozycki
    • 1
  • Sarthak Pati
    • 1
  • Christos Davatzikos
    • 1
  1. 1.Section of Biomedical Image Analysis, Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations