Advertisement

Deep Convolutional Neural Networks for the Segmentation of Gliomas in Multi-sequence MRI

  • Sérgio Pereira
  • Adriano Pinto
  • Victor Alves
  • Carlos A. Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)

Abstract

In their most aggressive form, the mortality rate of gliomas is high. Accurate segmentation is important for surgery and treatment planning, as well as for follow-up evaluation. In this paper, we propose to segment brain tumors using a Deep Convolutional Neural Network. Neural Networks are known to suffer from overfitting. To address it, we use Dropout, Leaky Rectifier Linear Units and small convolutional kernels. To segment the High Grade Gliomas and Low Grade Gliomas we trained two different architectures, one for each grade. Using the proposed method it was possible to obtain promising results in the 2015 Multimodal Brain Tumor Segmentation (BraTS) data set, as well as the second position in the on-site challenge.

Keywords

Magnetic Resonance Imaging Brain tumor Glioma Segmentation Deep learning Deep Convolutional Neural Network 

Notes

Acknowledgments

This work is supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941. Sérgio Pereira was supported by a scholarship from Fundação para a Ciência e Tecnologia (FCT), Portugal (scholarship number PD/BD/105803/2014). Brain tumor image data used in this article were obtained from the MICCAI 2013 Challenge on Multimodal Brain Tumor Segmentation. The challenge database contain fully anonymized images from the Cancer Imaging Archive.

References

  1. 1.
    Agn, M., Puonti, O., Law, I., af Rosenschöld, P.M., van Leemput, K.: Brain tumor segmentation by a generative model with a prior on tumor shape. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 1–4 (2015)Google Scholar
  2. 2.
    Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davazikos, C.: Segmentation of gliomas in multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 5–12 (2015)Google Scholar
  3. 3.
    Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of mri-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97 (2013)CrossRefGoogle Scholar
  5. 5.
    Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Proceedings of the Python for Scientific Computing Conference (SciPy), June 2010Google Scholar
  6. 6.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  7. 7.
    Dieleman, S., Schlter, J., Raffel, C., Olson, E., Snderby, S.K., Nouri, D., Maturana, D., Thoma, M., Battenberg, E., Kelly, J., Fauw, J.D., Heilman, M., diogo149, McFee, B., Weideman, H., takacsg84, peterderivaz, Jon, instagibbs, Rasul, D.K., CongLiu, Britefury, Degrave, J.: Lasagne: First release, August 2015. http://dx.doi.org/10.5281/zenodo.27878
  8. 8.
    Dvorák, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24 (2015)Google Scholar
  9. 9.
    Gooya, A., Pohl, K.M., Bilello, M., Cirillo, L., Biros, G., Melhem, E.R., Davatzikos, C.: Glistr: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)CrossRefGoogle Scholar
  10. 10.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. arXiv preprint (2015). arXiv:1505.03540
  11. 11.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013). http://www.jmir.org/2013/11/e245/ CrossRefGoogle Scholar
  12. 12.
    Kwon, D., Shinohara, R.T., Akbari, H., Davatzikos, C.: Combining generative models for multifocal glioma segmentation and registration. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 763–770. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  14. 14.
    Lee, C.-H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting brain tumors using pseudo–conditional random fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 359–366. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Lyksborg, M., Puonti, O., Agn, M., Larsen, R.: An ensemble of 2D convolutional neural networks for tumor segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 201–211. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  16. 16.
    Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30 (2013)Google Scholar
  17. 17.
    Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: Appearance-and context-sensitive features for brain tumor segmentation. In: BraTS Challenge Manuscripts, pp. 20–26 (2014)Google Scholar
  18. 18.
    Meier, R., Karamitsou, V., Habegger, S., Wiest, R., Reyes, M.: Parameter learning for crf-based tissue segmentation of brain tumors. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 48–51 (2015)Google Scholar
  19. 19.
    Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B., Ayache, N., Buendia, P., Collins, D., Cordier, N., Corso, J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K., Jena, R., John, N., Konukoglu, E., Lashkari, D., Mariz, J., Meier, R., Pereira, S., Precup, D., Price, S., Riklin Raviv, T., Reza, S., Ryan, M., Sarikaya, D., Schwartz, L., Shin, H.C., Shotton, J., Silva, C., Sousa, N., Subbanna, N., Szekely, G., Taylor, T., Thomas, O., Tustison, N., Unal, G., Vasseur, F., Wintermark, M., Ye, D.H., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  20. 20.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Nyúl, L.G., Udupa, J.K., Zhang, X.: New variants of a method of mri scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar
  22. 22.
    Pinto, A., Pereira, S., Correia, H., Oliveira, J., Rasteiro, D.M., Silva, C.A.: Brain tumour segmentation based on extremely randomized forest with high-level features. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3037–3040. IEEE (2015)Google Scholar
  23. 23.
    Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)CrossRefGoogle Scholar
  24. 24.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint. (2014). arXiv:1409.1556
  25. 25.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATHGoogle Scholar
  26. 26.
    Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)CrossRefGoogle Scholar
  27. 27.
    Tustison, N.J., Shrinidhi, K., Wintermark, M., Durst, C.R., Kandel, B.M., Gee, J.C., Grossman, M.C., Avants, B.B.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with antsr. Neuroinformatics pp. 1–17 (2014)Google Scholar
  28. 28.
    Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI Brain Tumor Segmentation Challenge (BraTS), pp. 1–5 (2014)Google Scholar
  29. 29.
    Van Meir, E.G., Hadjipanayis, C.G., Norden, A.D., Shu, H.K., Wen, P.Y., Olson, J.J.: Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J. Clin. 60(3), 166–193 (2010)CrossRefGoogle Scholar
  30. 30.
    Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sérgio Pereira
    • 1
    • 2
  • Adriano Pinto
    • 1
  • Victor Alves
    • 2
  • Carlos A. Silva
    • 1
  1. 1.CMEMS-UMinho Research UnitGuimarãesPortugal
  2. 2.Centro AlgoritmiUniversidade do MinhoBragaPortugal

Personalised recommendations