Advertisement

Image Features for Brain Lesion Segmentation Using Random Forests

  • Oskar MaierEmail author
  • Matthias Wilms
  • Heinz Handels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9556)

Abstract

From clinical practice as well as research methods arises the need for accurate, reproducible and reliable segmentation of pathological areas from brain MR scans. This paper describes a set of hand-selected, voxel-based image features highly suitable for the tissue discrimination task. Embedded in a random decision forest framework, the proposed method was applied to sub-acute ischemic stroke (ISLES 2015 - SISS), acute ischemic stroke (ISLES 2015 - SPES) and glioma (BRATS 2015) segmentation with only minor adaptation. For all of these three challenges, our generic approach received high ranks, among them a second place. The outcome underlines the robustness of our features for segmentation in brain MR, while simultaneously stressing the necessity for highly specialized solution to achieve state-of-the-art performance.

Keywords

Ischemic stroke Lesion segmentation Magnetic resonance imaging Brain MR MRI Random forest RDF Acute Sub-acute Glioma Tumor ISLES 2015 BRATS 2015 SISS SPES 

References

  1. 1.
    Astrup, J., Siesjö, B.K., Symon, L.: Thresholds in cerebral ischemia-the ischemic penumbra. Stroke 12(6), 723–725 (1981)CrossRefGoogle Scholar
  2. 2.
    Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, Nassir (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends\({\textregistered }\) Comput. Graph. 7(2–3), 81–227 (2012)Google Scholar
  4. 4.
    Filippi, M., Rocca, M.A.: MR imaging of multiple sclerosis. Radiology 259(3), 659–681 (2011). http://www.ncbi.nlm.nih.gov/pubmed/21602503 CrossRefGoogle Scholar
  5. 5.
    Ghosh, N., Yuan, X., Turenius, C.I., et al.: Automated core-penumbra quantification in neonatal ischemic brain injury. J. Cereb. Blood Flow Metab. 32(12), 2161–2170 (2012)CrossRefGoogle Scholar
  6. 6.
    de Haan, B., Clas, P., Juenger, H., Wilke, M., Karnath, H.O.: Fast semi-automated lesion demarcation in stroke. NeuroImage Clin. 9, 69–74 (2015). http://www.sciencedirect.com/science/article/pii/S2213158215001199 CrossRefGoogle Scholar
  7. 7.
    Hevia-Montiel, N., Jimenez-Alaniz, J., Medina-Banuelos, V., et al.: Robust nonparametric segmentation of infarct lesion from diffusion-weighted MR images. IEEE EMBS 2007, 2102–2105 (2007)Google Scholar
  8. 8.
    Joy, J.E., Johnston, R.B.: Multiple Sclerosis: Current Status and Strategies for the Future. National Academies Press, Washington (2001). http://www.ncbi.nlm.nih.gov/books/NBK222399/ Google Scholar
  9. 9.
    Kaus, M.R., Warfield, S.K., Nabavi, A., et al.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)CrossRefGoogle Scholar
  10. 10.
    Kemmling, A., Flottmann, F., Forkert, N.D., et al.: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J. Cereb. Blood Flow Metab. 35(9), 1397–1405 (2015)CrossRefGoogle Scholar
  11. 11.
    Krämer, U.M., Solbakk, A.K., Funderud, I., et al.: The role of the lateral prefrontal cortex in inhibitory motor control. Cortex 49(3), 837–849 (2013)CrossRefGoogle Scholar
  12. 12.
    La Mantia, L., Di Pietrantonj, C., Rovaris, M., et al.: Interferons-beta versus glatiramer acetate for relapsing-remitting multiple sclerosis. Cochrane Database Syst. Rev. 7, CD009333 (2014). http://www.ncbi.nlm.nih.gov/pubmed/25062935 Google Scholar
  13. 13.
    Lansberg, M.G., Straka, M., Kemp, S., et al.: MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet. Neurol. 11(10), 860–867 (2012). http://www.thelancet.com/article/S147444221270203X/fulltext CrossRefGoogle Scholar
  14. 14.
    Likar, B., Viergever, M.A., Pernus, F.: Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans. Med. Imag. 20(12), 1398–1410 (2001)CrossRefGoogle Scholar
  15. 15.
    Maier, O.: MedPy. https://pypi.python.org/pypi/MedPy. Accessed 29 March 2015
  16. 16.
    Maier, O., Wilms, M., et al.: Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J. Neurosci. Methods 240, 89–100 (2015)CrossRefGoogle Scholar
  17. 17.
    Menze, B., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  18. 18.
    Mishra, N.K., Albers, G.W., Christensen, S., et al.: Comparison of magnetic resonance imaging mismatch criteria to select patients for endovascular stroke therapy. Stroke 45(5), 1369–1374 (2014). http://stroke.ahajournals.org/content/45/5/1369.full CrossRefGoogle Scholar
  19. 19.
    Mitra, J., Bourgeat, P., Fripp, J., et al.: Lesion segmentation from multimodal MRI using random forest following ischemic stroke. Neuroimage 98, 324–335 (2014)CrossRefGoogle Scholar
  20. 20.
    Nyul, L., Udupa, J., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)CrossRefGoogle Scholar
  21. 21.
    Olivot, J.M., Mlynash, M., Thijs, V.N., et al.: Optimal Tmax threshold for predicting penumbral tissue in acute stroke. Stroke 40(2), 469–475 (2009). http://stroke.ahajournals.org/content/40/2/469.abstract CrossRefGoogle Scholar
  22. 22.
    Pedregosa, F., Varoquaux, G., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Polman, C.H., Reingold, S.C., Banwell, B., et al.: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69(2), 292–302 (2011). http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3084507&tool=pmcentrez&rendertype=abstract
  24. 24.
    Rekik, I., Allassonniere, S., Carpenter, T.K., Wardlaw, J.M.: Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal. Neuroimage Clin. 1(1), 164–178 (2012)CrossRefGoogle Scholar
  25. 25.
    Seghier, M.L., Ramlackhansingh, A., Crinion, J., Leff, A.P., Price, C.J.: Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage 41(4–3), 1253–1266 (2008)CrossRefGoogle Scholar
  26. 26.
    Wilke, M., de Haan, B., Juenger, H., Karnath, H.O.: Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56(4), 2038–2046 (2011)CrossRefGoogle Scholar
  27. 27.
    Zikic, D., Glocker, B., Konukoglu, E., Criminisi, A., Demiralp, C., Shotton, J., Thomas, O.M., Das, T., Jena, R., Price, S.J.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Medical InformaticsUniversität zu LübeckLübeckGermany
  2. 2.Graduate School for Computing in Medicine and Life SciencesUniversität zu LübeckLübeckGermany

Personalised recommendations