On Polynomial Bounds of Convergence for the Availability Factor

  • Alexander Veretennikov
  • Galina ZverkinaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 601)


A computable estimate of the readiness coefficient for a standard binary-state system is established in the case where both working and repair time distributions possess heavy tails.


Readiness coefficient Restorable system Heavy tails Polynomial convergence rate 



The authors are grateful to L. G. Afanasieva and V. V. Kozlov for very useful consultations.


  1. 1.
    Borovkov, A.A.: Stochastic Processes in Queueing Theory. Springer-Verlag, New York (1976)CrossRefzbMATHGoogle Scholar
  2. 2.
    Thorisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory. Birkhauser, Boston (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kalashnikov, V.V.: Some properties of piecewise linear Markov processes. Teor. Veroyatnost. i Primenen. 20(3), 571–583 (1975)Google Scholar
  5. 5.
    Klimov, G.P.: Probability Theory and Mathematical Statistics. Mir Publishers, Moscow (1986)zbMATHGoogle Scholar
  6. 6.
    Zverkina, G.A.: On some limit theorems following from Smith’s Theorem (2015). arxiv:1509.06178
  7. 7.
    Lindvall, T.: Lectures on the Coupling Method. Wiley, New York (1992)zbMATHGoogle Scholar
  8. 8.
    Griffeath, D.: A maximal coupling for Markov chains. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 31(2), 95–106 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Veretennikov, A.: Coupling method for Markov chains under integral Doeblin type condition. Theory Stoch. Process. 8(24(3–4)), 383–390 (2002)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Veretennikov, A., Zverkina, G.: On polynomial convergence rate of the availability factor to its stationary value. In: Proceedings of the Eighteenth International Scientific Conference on Distributed Computer and Communication Networks: Control Computation, Communications (DCCN-2015), pp. 168–175. ICS RAS, Moscow (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of LeedsLeedsUK
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Institute for Information Transmission ProblemsMoscowRussia
  4. 4.Moscow State University of Railway EngineeringMoscowRussia

Personalised recommendations