Potential of Solar Electricity for Grid-Connected Systems in Algeria

  • L. HassaineEmail author
  • A. Mraoui
Conference paper


This chapter proposes a photovoltaic (PV) electricity potential for grid-connected systems in Algeria using a solar radiation database and a system model of a PV module and inverter. The solar radiation database is based on the PV Geographic Information System (PVGIS). The database was used to analyze solar energy resources and to determinate the PV potential in Algeria. Climatic parameters (irradiation and temperature) and technological parameters (inverter efficiency) are the most influential parameters for PV production systems. Using the database input data, many calculations were carried out to determine the PV production and identify the influential parameters. Therefore, a map of the PV electricity potential for grid-connected systems in Algeria was developed, and the expected power production for planned PV grid-connected installations was determined.


Solar potential Model Inverted Grid connected 


  1. 1.
    Zervos A (2014) Renewables 2014 global status report. In: Renewable energy policy network for the 21st century, ParisGoogle Scholar
  2. 2.
    Stambouli AB (2011) Promotion of renewable energies in Algeria: strategies and perspectives. Renew Sustain Energy Rev 15:1169–1181. doi: 10.1016/j.rser.2010.11.017 CrossRefGoogle Scholar
  3. 3.
    Yaiche MR, Bouhanik A, Bekkouche SMA, Malek A, Benouaz T (2014) Revised solar maps of Algeria based on sunshine duration. Energy Convers Manag 82:114–123. doi: 10.1016/j.enconman.2014.02.063 CrossRefGoogle Scholar
  4. 4.
    McKenney DW, Pelland S, Poissant Y, Morris R, Hutchinson M, Papadopol P, Lawrence K, Campbell K (2008) Spatial insolation models for photovoltaic energy in Canada. Sol Energy 82:1049–1061CrossRefGoogle Scholar
  5. 5.
    D’Agostino V, Zelenka A (1992) Supplementing solar radiation network data by co-Kriging with satellite images. Int J Climatol 12:749–761CrossRefGoogle Scholar
  6. 6.
    Remund J (2008) Quality of Meteonorm Version 6.0. Europe 6Google Scholar
  7. 7.
    Cros S, Albuisson M, Lefevre M, Rigollier C, Wald L (2004) HelioClim: a long-term database on solar radiation for Europe and Africa. In: Eurosun 2004. PSE GmbH, Freiburg, pp 916–920Google Scholar
  8. 8.
    Huld T, Suri M, Dunlop E, Albuisson M, Wald L (2005) Integration of Helioclim-1 database into PV-GIS to estimate solar electricity potential in Africa. In: Proceedings of 20th European photovoltaic solar energy conferenceGoogle Scholar
  9. 9.
    SoDa—Free time-series of solar radiation data [WWW Document] (2015) Accessed 18 Mar 2015
  10. 10.
    Surface meteorology and Solar Energy [WWW Document] (2015) Accessed 18 Mar 2015
  11. 11.
    Nguyen HT, Pearce JM (2010) Estimating potential photovoltaic yield with r. sun and the open source geographical resources analysis support system. Sol Energy 84:831–843CrossRefGoogle Scholar
  12. 12.
    Wahab MA, El-Metwally M, Hassan R, Lefevre M, Oumbe A, Wald L (2010) Assessing surface solar irradiance and its long-term variations in the northern Africa desert climate using Meteosat images. Int J Remote Sens 31:261–280CrossRefGoogle Scholar
  13. 13.
    Wahab MA, El-Metwally M, Hassan R, Lefevre M, Oumbe A, Wald L (2009) Assessing surface solar irradiance in Northern Africa desert climate and its long-term variations from Meteosat images. Int J Remote Sens 31:261–280CrossRefGoogle Scholar
  14. 14.
    Haurant P, Muselli M, Pillot B, Oberti P (2012) Disaggregation of satellite derived irradiance maps: evaluation of the process and application to Corsica. Sol Energy 86:3168–3182CrossRefGoogle Scholar
  15. 15.
    Ineichen P (2006) Comparison of eight clear sky broadband models against 16 independent data banks. Sol Energy 80:468–478. doi: 10.1016/j.solener.2005.04.018 CrossRefGoogle Scholar
  16. 16.
    Wald L, Blanc P, Lefevre M, Gschwind B (2011) The performances of the HelioClim databases in Mozambique. ISES Solar World Congress 2011:268–275Google Scholar
  17. 17.
    Blanc P, Gschwind B, Lefèvre M, Wald L (2011) The HelioClim project: surface solar irradiance data for climate applications. Remote Sens 3:343–361CrossRefGoogle Scholar
  18. 18.
    Njomo D, Wald L (2007) Solar irradiation retrieval in Cameroon from Meteosat satellite imagery using the Heliosat-2 method. ISESCO Sci Technol Vis 2:19–24Google Scholar
  19. 19.
    I.E.C. Standard (1998) International Standard IEC 61724: photovoltaic system performance monitoring. Guidelines for measurements, data exchange and analysis. IECGoogle Scholar
  20. 20.
    I.E.C. Standard (2007) 60904-3, Photovoltaic devices—part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electrotechnical Commission, GenevaGoogle Scholar
  21. 21.
    Aste N, Del Pero C, Leonforte F, Manfren M (2013) A simplified model for the estimation of energy production of PV systems. Energy 59:503–512. doi: 10.1016/ CrossRefGoogle Scholar
  22. 22.
    Šúri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81:1295–1305CrossRefGoogle Scholar
  23. 23.
    Saffaripour MH, Mehrabian MA, Bazatgan H (2013) Predicting solar radiation fluxes for solar energy system applications. Int. J. Environ. Sci. Techno. 10:761–768CrossRefGoogle Scholar
  24. 24.
    Quesada B, Sánchez C, Cañada J, Royo R, Payá J (2011) Experimental results and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system. Appl Energy 88:1772–1783. doi: 10.1016/j.apenergy.2010.12.011 CrossRefGoogle Scholar
  25. 25.
    JRC’s Institute for Energy and Transport—PVGIS—European Commission [WWW Document] (2015) Accessed 18 Mar 2015
  26. 26.
    Gastli A, Charabi Y (2010) Solar electricity prospects in Oman using GIS-based solar radiation maps. Renew Sustain Energy Rev 14:790–797. doi: 10.1016/j.rser.2009.08.018 CrossRefGoogle Scholar
  27. 27.
    De Soto W, Klein SA, Beckman WA (2006) Improvement and validation of a model for photovoltaic array performance. Sol Energy 80:78–88. doi: 10.1016/j.solener.2005.06.010 CrossRefGoogle Scholar
  28. 28.
    Messenger RA, Ventre J (2010) Photovoltaic systems engineering. CRC, Boca RatonGoogle Scholar
  29. 29.
    Osterwald CR (1986) Translation of device performance measurements to reference conditions. Sol Cells 18:269–279CrossRefGoogle Scholar
  30. 30.
    Chouder A, Silvestre S, Taghezouit B, Karatepe E (2013) Monitoring, modelling and simulation of PV systems using LabVIEW. Sol Energy 91:337–349. doi: 10.1016/j.solener.2012.09.016 CrossRefGoogle Scholar
  31. 31.
    King DL, Gonzalez S, Galbraith GM, Boyson WE (2007) Performance model for grid-connected photovoltaic inverters (No. SAND2007-5036)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Centre de Développement des Energies Renouvelables (CDER)AlgiersAlgeria

Personalised recommendations