Current Status of Microfluidics-Assisted Cytology: The Application in Molecular Cytology

  • Oladunni AdeyigaEmail author
  • Albert J. Mach
  • Jianyu Rao
  • Dino Di Carlo
Part of the Essentials in Cytopathology book series (EICP, volume 26)


Recent advances in miniaturization and fluid handling enabled by microfluidics are poised to have an impact in the preparation of clinical samples and analysis of cells. In this book chapter we introduce the fundamental technological advances and microfluidic technologies that address current challenges in cytopathology. We illustrate how these technologies can expand the opportunities for analysis and samples made available for use by the cytopathologist.

For example, by isolating rare subpopulations of cells from blood or expeditiously purifying body fluid samples, these technologies can improve cytomorphological, molecular, and cytogenetic testing by the cytopathologist. Contrary to previous smear-based conventional cytology and current liquid-based cytology preparation methods, microfluidics-assisted cytology techniques may provide more suitable cell preparations for molecular analysis. Many of these technologies are currently in development in academic labs; however, commercialization is in progress, and microfluidics-assisted cytology promises to reach the clinical lab in the near future.


Microfluidics Microfabrication Soft lithography Photoresist Polydimethylsiloxane Centrifuge-on-a-Chip 


  1. 1.
    Bélanger MC, Marois Y. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review. J Biomed Mater Res. 2001;58(5):467–77. doi: 10.1002/jbm.1043.CrossRefPubMedGoogle Scholar
  2. 2.
    Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheung K, Gawad S, Renaud P. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A. 2005;65A(2):124–32. doi: 10.1002/cyto.a.20141.CrossRefGoogle Scholar
  4. 4.
    Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP, et al. Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip. 2009;9(13):1942–50. doi: 10.1039/B822442K.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Holmes D, Pettigrew D, Reccius CH, Gwyer JD, van Berkel C, Holloway J, et al. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip. 2009;9(20):2881–9. doi: 10.1039/B910053A.CrossRefPubMedGoogle Scholar
  6. 6.
    Hur SC, Tse HTK, Di Carlo D. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip. 2010;10(3):274–80. doi: 10.1039/B919495A.CrossRefPubMedGoogle Scholar
  7. 7.
    Rivet C, Lee H, Hirsch A, Hamilton S, Lu H. Microfluidics for medical diagnostics and biosensors. Chem Eng Sci. 2011;66(7):1490–507. 10.1016/j.ces.2010.08.015.
  8. 8.
    Yung CW, Fiering J, Mueller AJ, Ingber DE. Micromagnetic-microfluidic blood cleansing device. Lab Chip. 2009;9(9):1171–7. doi: 10.1039/b816986a.
  9. 9.
    Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip. 2008;8(11):1906–14. doi: 10.1039/B807107A.
  10. 10.
    Chun B, Ladd AJC. Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids. 2006;18(3). doi: 10.1063/1.2176587.
  11. 11.
    Di Carlo D. Inertial microfluidics. Lab Chip. 2009;9(21):3038–46. doi: 10.1039/B912547G.
  12. 12.
    Seo J, Lean MH, Kole A. Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett. 2007;91(3). doi: 10.1063/1.2756272
  13. 13.
    Dharmasiri U, Witek MA, Adams AA, Soper SA. Microsystems for the capture of low-abundance cells. Annu Rev Anal Chem. 2010;3(1):409–31. doi: 10.1146/annurev.anchem.111808.073610.CrossRefGoogle Scholar
  14. 14.
    Gossett D, Weaver W, Mach A, Hur S, Tse H, Lee W, et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem. 2010;397(8):3249–67. doi: 10.1007/s00216-010-3721-9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nilsson J, Evander M, Hammarström B, Laurell T. Review of cell and particle trapping in microfluidic systems. Anal Chim Acta. 2009;649(2):141–57. 10.1016/j.aca.2009.07.017.CrossRefPubMedGoogle Scholar
  16. 16.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91. doi: 10.1056/NEJMoa040766.CrossRefPubMedGoogle Scholar
  17. 17.
    Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, et al. Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci. 2006;103(40):14779–84. doi: 10.1073/pnas.0605967103.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip. 2011;11(17):2827–34. doi: 10.1039/C1LC20330D.CrossRefPubMedGoogle Scholar
  19. 19.
    Lin S-CS, Mao X, Huang TJ. Surface acoustic wave (SAW) acoustophoresis: now and beyond. Lab Chip. 2012;12(16):2766–70. doi: 10.1039/C2LC90076A.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nordin M, Laurell T. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis. Lab Chip. 2012;12(22):4610–6. doi: 10.1039/C2LC40629B.CrossRefPubMedGoogle Scholar
  21. 21.
    Petersson F, Åberg L, Swärd-Nilsson A-M, Laurell T. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem. 2007;79(14):5117–23. doi: 10.1021/ac070444e.CrossRefPubMedGoogle Scholar
  22. 22.
    Juncker D, Schmid H, Drechsler U, Wolf H, Wolf M, Michel B, et al. Autonomous microfluidic capillary system. Anal Chem. 2002;74(24):6139–44. doi: 10.1021/ac0261449.CrossRefPubMedGoogle Scholar
  23. 23.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10. doi: 10.1021/ac9013989.CrossRefGoogle Scholar
  24. 24.
    Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip. 2010;10(20):2659–65. doi: 10.1039/C004821F.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL, Ross BM, Ricco AJ, Lee LP. Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip. 2011;11(5):845–50. doi: 10.1039/C0LC00403K.CrossRefPubMedGoogle Scholar
  26. 26.
    Hosokawa K, Sato K, Ichikawa N, Maeda M. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis. Lab Chip. 2004;4(3):181–5. doi: 10.1039/B403930K.CrossRefPubMedGoogle Scholar
  27. 27.
    Amasia M, Madou M. Large-volume centrifugal microfluidic device for blood plasma separation. Bioanalysis. 2010;2(10):1701–10. doi: 10.4155/bio.10.140.CrossRefPubMedGoogle Scholar
  28. 28.
    Berry S, Strotman L, Kueck J, Alarid E, Beebe D. Purification of cell subpopulations via immiscible filtration assisted by surface tension (IFAST). Biomed Microdevices. 2011;13(6):1033–42. doi: 10.1007/s10544-011-9573-z.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shah GJ, Ohta AT, Chiou EP-Y, Wu MC, Kim C-J. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip. 2009;9(12):1732–9. doi: 10.1039/b821508a/.CrossRefPubMedGoogle Scholar
  30. 30.
    Shen H-H, Fan S-K, Kim C-J, Yao D-J. EWOD microfluidic systems for biomedical applications. Microfluid Nanofluid. 2014;16(5):965–87. doi: 10.1007/s10404-014-1386-y.CrossRefGoogle Scholar
  31. 31.
    Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, Tagawa ST, et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip. 2010;10(1):27–9. doi: 10.1039/B917959C.
  32. 32.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.
  33. 33.
    Stott SL, Hsu C-H, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci. 2010;107(43):18392–7. doi: 10.1073/pnas.1012539107.
  34. 34.
    Wang S, Liu K, Liu J, Yu ZTF, Xu X, Zhao L, et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed. 2011;50(13):3084–8. doi: 10.1002/anie.201005853.CrossRefGoogle Scholar
  35. 35.
    Hou HW, Bhagat AAS, Lin Chong AG, Mao P, Wei Tan KS, Han J, et al. Deformability based cell margination-A simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip. 2010;10(19):2605–13. doi: 10.1039/C003873C.CrossRefPubMedGoogle Scholar
  36. 36.
    Shevkoplyas SS, Yoshida T, Munn LL, Bitensky MW. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem. 2005;77(3):933–7. doi: 10.1021/ac049037i.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhao W, Cui CH, Bose S, Guo D, Shen C, Wong WP, et al. Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci. 2012;109(48):19626–31. doi: 10.1073/pnas.1211234109.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chabert M, Viovy J-L. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci. 2008;105(9):3191–6. doi: 10.1073/pnas.0708321105.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Edd JF, Di Carlo D, Humphry KJ, Koster S, Irimia D, Weitz DA, et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip. 2008;8(8):1262–4. doi: 10.1039/B805456H.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73. doi: 10.1039/B924109D.CrossRefPubMedGoogle Scholar
  41. 41.
    Billah S, Stewart J, Staerkel G, Chen S, Gong Y, Guo M. EGFR and KRAS mutations in lung carcinoma. Cancer Cytopathol. 2011;119(2):111–7. doi: 10.1002/cncy.20151.CrossRefPubMedGoogle Scholar
  42. 42.
    Pratt ED, Huang C, Hawkins BG, Gleghorn JP, Kirby BJ. Rare cell capture in microfluidic devices. Chem Eng Sci. 2011;66(7):1508–22. 10.1016/j.ces.2010.09.012.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Plouffe BD, Mahalanabis M, Lewis LH, Klapperich CM, Murthy SK. Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. Anal Chem. 2012;84(3):1336–44. doi: 10.1021/ac2022844.CrossRefPubMedGoogle Scholar
  44. 44.
    Shah AM, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, et al. Biopolymer system for cell recovery from microfluidic cell capture devices. Anal Chem. 2012;84(8):3682–8. doi: 10.1021/ac300190j.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Che J, Mach AJ, Go DE, Talati I, Ying Y, Rao J, et al. Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics. PLoS ONE. 2013;8(10):e78194. doi: 10.1371/journal.pone.0078194.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sollier E, Go DE, Che J, Gossett DR, O'Byrne S, Weaver WM, et al. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip. 2014;14(1):63–77. doi: 10.1039/c3lc50689d.CrossRefPubMedGoogle Scholar
  47. 47.
    Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci. 2012;109(20):7630–5. doi: 10.1073/pnas.1200107109.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tse HT, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, et al. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med. 2013;5(212):212ra163. doi: 10.1126/scitranslmed.3006559.CrossRefPubMedGoogle Scholar
  49. 49.
    Lovchik RD, Kaigala GV, Georgiadis M, Delamarche E. Micro-immunohistochemistry using a microfluidic probe. Lab Chip. 2012;12(6):1040–3. doi: 10.1039/C2LC21016A.
  50. 50.
    Kim MS, Kim T, Kong S-Y, Kwon S, Bae CY, Choi J, et al. Breast cancer diagnosis using a microfluidic multiplexed immunohistochemistry platform. PLoS ONE. 2010;5(5):e10441. doi: 10.1371/journal.pone.0010441.
  51. 51.
    Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip. 2009;9(9):1193–9. doi: 10.1039/B817611F.
  52. 52.
    Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007;1162(2):154–61. doi: 10.1016/j.chroma.2007.05.064.
  53. 53.
    Amini H, Sollier E, Weaver WM, Di Carlo D. Intrinsic particle-induced lateral transport in microchannels. Proc Natl Acad Sci. 2012;109(29):11593–8. doi: 10.1073/pnas.1207550109.
  54. 54.
    Barbulovic-Nad I, Yang H, Park PS, Wheeler AR. Digital microfluidics for cell-based assays. Lab Chip. 2008;8(4):519–26. doi: 10.1039/B717759C.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Oladunni Adeyiga
    • 1
    • 2
    • 3
    Email author
  • Albert J. Mach
    • 4
  • Jianyu Rao
    • 5
  • Dino Di Carlo
    • 2
    • 3
    • 6
    • 7
  1. 1.Division of Infectious Diseases, Department of MedicineDavid Geffen School of Medicine at University of California, Los AngelesLos AngelesUSA
  2. 2.Department of BioengineeringHenry Samueli School of Engineering & Applied Science at University of California, Los AngelesLos AngelesUSA
  3. 3.Nanoelectronics Research FacilityUniversity of California, Los AngelesLos AngelesUSA
  4. 4.Becton, Dickinson and CompanyFranklin LakesUSA
  5. 5.Department of Pathology and Laboratory MedicineUniversity of California at Los AngelesLos AngelesUSA
  6. 6.California NanoSystems Institute at University of California, Los AngelesLos AngelesUSA
  7. 7.Jonsson Comprehensive Cancer Center at University of California, Los AngelesLos AngelesUSA

Personalised recommendations