Advertisement

A Compositional Approach to the Verification of Hybrid Systems

  • Lăcrămioara Aştefănoaei
  • Saddek Bensalem
  • Marius Bozga
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9660)

Abstract

The increase of complexity in modelling systems and the chances of success when model-checking them tend to be inversely proportional. This mere observation justifies plainly the need to investigate alternative ways for verification. In this paper we present such an alternative which uses a compositional verification rule. The basic idea is to automatically compute local properties and combine them such that together they are strong enough to prove global safety properties of systems. In [2] we showed how such a rule works in the framework of timed systems with a fixed number of components and in [3] how the whole approach can be extended to the parameterised case. The application of the compositional verification rule can be pushed even further with respect to two directions: (1) hybrid and (2) parametric systems. This is the subject of the present paper.

Keywords

Hybrid System Convex Polyhedron Reachable State Local Invariant Symbolic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Chih-Hong Cheng for his friendly feedback and for sharing some ideas about possible ways to tackle decomposition.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aştefănoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Aştefănoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional verification of parameterised timed systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 66–81. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and translation tool for hybrid automaton models. In: HSCC (2015)Google Scholar
  5. 5.
    Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H.: Compositional verification for component-based systems and application. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bogomolov, S., Donzé, A., Frehse, G., Grosu, R., Johnson, T.T., Ladan, H., Podelski, A., Wehrle, M.: Abstraction-based guided search for hybrid systems. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 117–134. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Brockschmidt, M., Larraz, D., Oliveras, A., Carbonell, E.R., Rubio, A.: Compositional safety verification with max-smt. In: FMCAD (2015)Google Scholar
  8. 8.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, X., Schupp, S., Makhlouf, I.B., Ábrahám, E., Frehse, G., Kowalewski, S.: A benchmark suite for hybrid systems reachability analysis. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Cimatti, A.: Application of SMT solvers to hybrid system verification. In: FMCAD (2012)Google Scholar
  11. 11.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In: FMCAD (2013)Google Scholar
  12. 12.
    Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: An SMT-based model checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 52–67. Springer, Heidelberg (2015)Google Scholar
  13. 13.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods Syst. Des. 1, 385–415 (1992)CrossRefzbMATHGoogle Scholar
  14. 14.
    Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems: a case study on concurrency and coupling. In: HSCC (2014)Google Scholar
  15. 15.
    David, A., Larsen, K.G., Legay, A., Poulsen, D.B.: Statistical model checking of dynamic networks of stochastic hybrid automata. ECEASST 66 (2013)Google Scholar
  16. 16.
    Donzé, A.: Breach, A toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving SAT modulo ODE for hybrid systems analysis by combining different enclosure methods. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 172–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Frehse, G.: Compositional Verification of Hybrid Systems using Simulation Relations. Ph.D. thesis, Radboud Universiteit Nijmegen (2005)Google Scholar
  19. 19.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid automata using the inverse method. Int. J. Found. Comput. Sci. 24, 233–249 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS (1996)Google Scholar
  24. 24.
    Henzinger, T.A., Minea, M., Prabhu, V.S.: Assume-guarantee reasoning for hierarchical hybrid systems. In: Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 275–290. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. 25.
    Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) FMIA 1996. LNCS, vol. 1165. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  26. 26.
    Hermanns, H., Krčál, J., Křetínský, J.: Compositional verification and optimization of interactive markov chains. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 364–379. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Ho, P.-H.: Automatic Analysis of Hybrid Systems. Ph.D. thesis, Cornell University (1995)Google Scholar
  28. 28.
    Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E., Melhart, B.E.: Software requirements analysis for real-time process-control systems. IEEE Trans. Softw. Eng. 17, 241–258 (1991)CrossRefGoogle Scholar
  29. 29.
    Jeannin, J., Platzer, A.: dtl2: Differential temporal dynamic logic with nested temporalities for hybrid systems. In: IJCAR (2014)Google Scholar
  30. 30.
    Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata networks. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273, pp. 18–34. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  31. 31.
    Johnson, T.T., Mitra, S.: Anonymized reachability of hybrid automata networks. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 130–145. Springer, Heidelberg (2014)Google Scholar
  32. 32.
    Kong, S., Gao, S., Chen, W., Clarke, E.: \({\sf dReach}\): \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015)Google Scholar
  33. 33.
    Legay, A., Bensalem, S., Boyer, B., Bozga, M.: Incremental generation of linear invariants for component-based systems. In: ACSD (2013)Google Scholar
  34. 34.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185, 105–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    de Moura, L., Bjørner, N.S.: Efficient e-matching for SMT solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  36. 36.
    Mover, S.: Verification of Hybrid Systems using Satisfiability Modulo Theories. Ph.D. thesis, FBK-IRST/DIT (2014)Google Scholar
  37. 37.
    Mover, S., Cimatti, A., Tiwari, A., Tonetta, S.: Time-aware relational abstractions for hybrid systems. In: EMSOFT (2013)Google Scholar
  38. 38.
    Oehlerking, J.: Decomposition of Stability Proofs for Hybrid Systems. Ph.D. thesis, Carl von Ossietzky Universität, Oldenburg (2011)Google Scholar
  39. 39.
    Quesel, J.-D., Platzer, A.: Playing hybrid games with KeYmaera. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 439–453. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  40. 40.
    Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In: FMCAD (2011)Google Scholar
  41. 41.
    Testylier, R., Dang, T.: NLTOOLBOX: A library for reachability computation of nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 469–473. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for probabilistic hybrid systems. Eur. J. Control 18, 588–590 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lăcrămioara Aştefănoaei
    • 1
  • Saddek Bensalem
    • 2
  • Marius Bozga
    • 2
  1. 1.fortiss - An-Institut TUMMünchenGermany
  2. 2.UJF-Grenoble, CNRS VERIMAG UMR 5104GrenobleFrance

Personalised recommendations