Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance

  • Stjepan Picek
  • Carlos A. Coello Coello
  • Domagoj Jakobovic
  • Nele Mentens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)


The problem of finding the shortest addition chain for a given exponent is of great relevance in cryptography, but is also very difficult to solve since it is an NP-hard problem. In this paper, we propose a genetic algorithm with a novel representation of solutions and new crossover and mutation operators to minimize the length of the addition chains corresponding to a given exponent. We also develop a repair strategy that significantly enhances the performance of our approach. The results are compared with respect to those generated by other metaheuristics for instances of moderate size, but we also investigate values up to \(2^{127} - 3\). For those instances, we were unable to find any results produced by other metaheuristics for comparison, and three additional strategies were adopted in this case to serve as benchmarks. Our results indicate that the proposed approach is a very promising alternative to deal with this problem.


Addition chains Cryptography Genetic algorithms Exponentiation 



This work has been supported in part by Croatian Science Foundation under the project IP-2014-09-4882. The second author gratefully acknowledges support from CONACyT project no. 221551. In addition, this work was supported in part by the Research Council KU Leuven (C16/15/058) and IOF project EDA-DSE (HB/13/020).


  1. 1.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol. 2, 3rd edn. Addison-Wesley Longman Publishing, Boston (1997)zbMATHGoogle Scholar
  3. 3.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Thurber, E.G.: The scholz-brauer problem on addition chains. Pac. J. Math. 49(1), 229–242 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Thurber, E.G.: On addition chains \(1(mn)\le 1(n)-b\) and lower bounds for \(c(r)\). Duke Math. J. 40(4), 907–913 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Flammenkamp, A.: Shortest addition chains (November 2015).
  7. 7.
    Bernstein, D.J.: Differential addition chains (2006).
  8. 8.
    Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27, 129–146 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Galbraith, S., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. J. Cryptol. 24(3), 446–469 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over the Mersenne prime. Cryptology ePrint Archive, Report 2015/565 (2015).
  12. 12.
    Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for GLV-based scalar multiplication and their implementation on GLV-GLS curves. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 1–27. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Ko, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Bos, J.N.E., Coster, M.J.: Addition chain heuristics. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Nedjah, N., de Macedo Mourelle, L.: Minimal addition chain for efficient modular exponentiation using genetic algorithms. In: Hendtlass, T., Ali, M. (eds.) IEA/AIE 2002. LNCS (LNAI), vol. 2358, p. 88. Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Nedjah, N., de Macedo Mourelle, L.: Minimal addition-subtraction chains using genetic algorithms. In: Yakhno, T. (ed.) ADVIS 2002. LNCS, vol. 2457, pp. 303–313. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Nedjah, N., de Macedo Mourelle, L.: Minimal addition-subtraction sequences for efficient pre-processing in large window-based modular exponentiation using genetic algorithms. In: Liu, J., Cheung, Y.M., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 329–336. Springer, Heidelberg (2003)Google Scholar
  18. 18.
    Nedjah, N., de Macedo Mourelle, L.: Finding minimal addition chains using ant colony. In: Yang, Z.R., Yin, H., Everson, R.M. (eds.) IDEAL 2004. LNCS, vol. 3177, pp. 642–647. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Nedjah, N., de Macedo Mourelle, L.: Towards minimal addition chains using ant colony optimisation. J. Math. Model. Algorithms 5(4), 525–543 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Cruz-Cortés, N., Rodríguez-Henríquez, F., Juárez-Morales, R., Coello Coello, C.A.: Finding optimal addition chains using a genetic algorithm approach. In: Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 208–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Cruz-Corteés, N., Rodriguez-Henriquez, F., Coello Coello, C.: An artificial immune system heuristic for generating short addition chains. IEEE Trans. Evol. Comput. 12(1), 1–24 (2008)CrossRefGoogle Scholar
  22. 22.
    Osorio-Hernández, L.G., Mezura-Montes, E., Cortés, N.C., Rodríguez-Henríquez, F.: A genetic algorithm with repair and local search mechanisms able to find minimal length addition chains for small exponents. In: Proceedings of IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp. 1422–1429, 18–21 May 2009Google Scholar
  23. 23.
    León-Javier, A., Cruz-Cortés, N., Moreno-Armendáriz, M.A., Orantes-Jiménez, S.: Finding minimal addition chains with a particle swarm optimization algorithm. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 680–691. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Nedjah, N., de Macedo Mourelle, L.: High-performance SoC-based implementation of modular exponentiation using evolutionary addition chains for efficient cryptography. Appl. Soft Comput. 11(7), 4302–4311 (2011)CrossRefGoogle Scholar
  25. 25.
    Sarkar, A., Mandal, J.: Swarm intelligence based faster public-key cryptography in wireless communication (SIFPKC). Int. J. Comput. Sci. Eng. Technol. (IJCSET) 7, 267–273 (2012)Google Scholar
  26. 26.
    Rodriguez-Cristerna, A., Torres-Jimenez, J.: A genetic algorithm for the problem of minimal brauer chains. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) RAHIS 2013. SCI, vol. 451, pp. 481–500. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Addition chain length minimization with evolutionary programming. In: 13th Annual Genetic and Evolutionary Computation Conference, GECCO 2011, Companion Material Proceedings, Dublin, Ireland, pp. 59–60, 12–16 July 2011Google Scholar
  28. 28.
    Domínguez-Isidro, S., Mezura-Montes, E., Osorio-Hernández, L.G.: Evolutionary programming for the length minimization of addition chains. Eng. Appl. AI 37, 125–134 (2015)CrossRefGoogle Scholar
  29. 29.
    Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stjepan Picek
    • 1
  • Carlos A. Coello Coello
    • 2
  • Domagoj Jakobovic
    • 3
  • Nele Mentens
    • 1
  1. 1.ESAT/COSIC and iMindsKU LeuvenLeuven-HeverleeBelgium
  2. 2.Department of Computer ScienceCINVESTAV-IPNMexico D.F.Mexico
  3. 3.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations