Determining the Difficulty of Landscapes by PageRank Centrality in Local Optima Networks

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)


The contribution of this study is twofold: First, we show that we can predict the performance of Iterated Local Search (ILS) in different landscapes with the help of Local Optima Networks (LONs) with escape edges. As a predictor, we use the PageRank Centrality of the global optimum. Escape edges can be extracted with lower effort than the edges used in a previous study. Second, we show that the PageRank vector of a LON can be used to predict the solution quality (average fitness) achievable by ILS in different landscapes.


Fitness landscape analysis Search difficulty PageRank centrality Local optima networks NK-landscapes 


  1. 1.
    Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO 2008, p. 555. ACM Press, New York (2008)Google Scholar
  2. 2.
    Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ochoa, G., Chicano, F., Tinós, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - GECCO 2015, pp. 449–456. ACM Press, Madrid, Spain (2015)Google Scholar
  5. 5.
    Lu, G., Li, J., Yao, X.: Fitness landscapes and problem difficulty in evolutionary algorithms: from theory to applications. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 141–162. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic performance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 109–140. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 245–276. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference - GECCO 2012, p. 369 (2012)Google Scholar
  9. 9.
    Herrmann, S., Rothlauf, F.: Predicting heuristic search performance with pageRank centrality in local optima networks. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - GECCO 2015, pp. 401–408. ACM Press, Madrid, Spain (2015)Google Scholar
  10. 10.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  11. 11.
    Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure of TSP fitness landscapes : a visual exploration. In: Artificial Evolution (EA 2015). Lyon (2015)Google Scholar
  12. 12.
    Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Rothlauf, F.: Design of Modern Heuristics: Principles and Application. Springer, Heidelberg (2011)CrossRefMATHGoogle Scholar
  15. 15.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the 6th International Congress of Genetics, pp. 356–366 (1932)Google Scholar
  16. 16.
    Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing. Natural Computing Series, pp. 175–206. Springer, Berlin and Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 336, 325–336 (1990)CrossRefMATHGoogle Scholar
  20. 20.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms (1995)Google Scholar
  21. 21.
    Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  22. 22.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27, 55–71 (2005)CrossRefGoogle Scholar
  23. 23.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)CrossRefGoogle Scholar
  24. 24.
    Franceschet, M.: PageRank: standing on the shoulders of giants. Commun. ACM 54, 92 (2011)CrossRefGoogle Scholar
  25. 25.
    Frobenius, G.: Über Matrizen aus nicht negativen Elementen. In: Sitzungsberichte Preussische Akademie der Wissenschaft, pp. 456–477, Berlin (1912)Google Scholar
  26. 26.
    Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 1(64), 248–263 (1907)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128(1), 11–45 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information Systems and Business AdministrationJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations