Advertisement

Determining the Difficulty of Landscapes by PageRank Centrality in Local Optima Networks

  • Sebastian Herrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)

Abstract

The contribution of this study is twofold: First, we show that we can predict the performance of Iterated Local Search (ILS) in different landscapes with the help of Local Optima Networks (LONs) with escape edges. As a predictor, we use the PageRank Centrality of the global optimum. Escape edges can be extracted with lower effort than the edges used in a previous study. Second, we show that the PageRank vector of a LON can be used to predict the solution quality (average fitness) achievable by ILS in different landscapes.

Keywords

Fitness landscape analysis Search difficulty PageRank centrality Local optima networks NK-landscapes 

References

  1. 1.
    Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation - GECCO 2008, p. 555. ACM Press, New York (2008)Google Scholar
  2. 2.
    Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Ochoa, G., Chicano, F., Tinós, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - GECCO 2015, pp. 449–456. ACM Press, Madrid, Spain (2015)Google Scholar
  5. 5.
    Lu, G., Li, J., Yao, X.: Fitness landscapes and problem difficulty in evolutionary algorithms: from theory to applications. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 141–162. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  6. 6.
    Malan, K.M., Engelbrecht, A.P.: Fitness landscape analysis for metaheuristic performance prediction. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 109–140. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 245–276. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks and the performance of iterated local search. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference - GECCO 2012, p. 369 (2012)Google Scholar
  9. 9.
    Herrmann, S., Rothlauf, F.: Predicting heuristic search performance with pageRank centrality in local optima networks. In: Proceedings of the 2015 Genetic and Evolutionary Computation Conference - GECCO 2015, pp. 401–408. ACM Press, Madrid, Spain (2015)Google Scholar
  10. 10.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. Handbook of Metaheuristics, pp. 320–353. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  11. 11.
    Ochoa, G., Veerapen, N., Whitley, D., Burke, E.K.: The multi-funnel structure of TSP fitness landscapes : a visual exploration. In: Artificial Evolution (EA 2015). Lyon (2015)Google Scholar
  12. 12.
    Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rothlauf, F.: Design of Modern Heuristics: Principles and Application. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the 6th International Congress of Genetics, pp. 356–366 (1932)Google Scholar
  16. 16.
    Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. SCI, vol. 378, pp. 161–191. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing. Natural Computing Series, pp. 175–206. Springer, Berlin and Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 336, 325–336 (1990)CrossRefzbMATHGoogle Scholar
  20. 20.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the Sixth International Conference on Genetic Algorithms (1995)Google Scholar
  21. 21.
    Stillinger, F.H.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)CrossRefGoogle Scholar
  22. 22.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27, 55–71 (2005)CrossRefGoogle Scholar
  23. 23.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)CrossRefGoogle Scholar
  24. 24.
    Franceschet, M.: PageRank: standing on the shoulders of giants. Commun. ACM 54, 92 (2011)CrossRefGoogle Scholar
  25. 25.
    Frobenius, G.: Über Matrizen aus nicht negativen Elementen. In: Sitzungsberichte Preussische Akademie der Wissenschaft, pp. 456–477, Berlin (1912)Google Scholar
  26. 26.
    Perron, O.: Zur Theorie der Matrices. Mathematische Annalen 1(64), 248–263 (1907)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128(1), 11–45 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information Systems and Business AdministrationJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations