An Evolutionary Approach to the Full Optimization of the Traveling Thief Problem

  • Nuno Lourenço
  • Francisco B. Pereira
  • Ernesto Costa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)


Real-World problems usually consist of several different small sub-problems interacting with each other. These interactions promote a relation of interdependence, where the quality of a solution to one sub-problem influences the quality of another partial solution. The Traveling Thief Problem (TTP) is a recent benchmark that results from the combination of the Traveling Salesman Problem (TSP) and the Knapsack Problem (KP). Thus far, existing approaches solve the TTP by fixing one of the components, usually the TSP, and then tackling the KP. We follow in a different direction and propose an Evolutionary Algorithm that addresses both sub-problems at the same time. Experimental results show that solving the TTP as whole creates conditions for discovering solutions with enhanced quality, and that fixing one of the components might compromise the overall results.


Evolutionary algorithms Combinatorial problems Traveling thief problem 


  1. 1.
    Applegate, D., Cook, W., Rohe, A.: Chained lin-kernighan for large traveling salesman problems. INFORMS J. Comput. 15(1), 82–92 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bonyadi, M.R., Michalewicz, Z., Barone, L.: The travelling thief problem: the first step in the transition from theoretical problems to realistic problems. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1037–1044. IEEE (2013)Google Scholar
  3. 3.
    Bonyadi, M.R., Michalewicz, Z., Roman Przybyoek, M., Wierzbicki, A.: Socially inspired algorithms for the travelling thief problem. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation. pp. 421–428. ACM (2014)Google Scholar
  4. 4.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Faulkner, H., Polyakovskiy, S., Schultz, T., Wagner, M.: Approximate approaches to the traveling thief problem. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 385–392. ACM (2015)Google Scholar
  6. 6.
    Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In: Proceedings of the first International Conference on Genetic Algorithms and their Applications pp. 154–159 (1985)Google Scholar
  7. 7.
    Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. Local Search Comb. Optim. 1, 215–310 (1997)MathSciNetMATHGoogle Scholar
  8. 8.
    Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for the 0–1 knapsack problem. Manage. Sci. 45(3), 414–424 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Mei, Y., Li, X., Yao, X.: Improving efficiency of heuristics for the large scale traveling thief problem. In: Dick, G., Browne, W.N., Whigham, P., Zhang, M., Bui, L.T., Ishibuchi, H., Jin, Y., Li, X., Shi, Y., Singh, P., Tan, K.C., Tang, K. (eds.) SEAL 2014. LNCS, vol. 8886, pp. 631–643. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)CrossRefMATHGoogle Scholar
  11. 11.
    Polyakovskiy, S., Bonyadi, M.R., Wagner, M., Michalewicz, Z., Neumann, F.: A comprehensive benchmark set and heuristics for the traveling thief problem. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 477–484. ACM (2014)Google Scholar
  12. 12.
    Reinelt, G.: Tspliba traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., OReilly, U.M., Luke, S.: Better gp benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nuno Lourenço
    • 1
  • Francisco B. Pereira
    • 1
    • 2
  • Ernesto Costa
    • 1
  1. 1.Department of Informatics Engineering, CISUCUniversity of CoimbraCoimbraPortugal
  2. 2.Polytechnic Institute of CoimbraCoimbraPortugal

Personalised recommendations