Particle Swarm Optimisation with Sequence-Like Indirect Representation for Web Service Composition

  • Alexandre Sawczuk da Silva
  • Yi Mei
  • Hui Ma
  • Mengjie Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)


Automated Web service composition, which refers to the creation of a complex application from pre-existing building blocks (Web services), has been an active research topic in the past years. The advantage of having an automated composition system is that it allows users to create new applications simply by providing the required parameters, instead of having to manually assemble the services. Existing approaches to automated composition rely on planning techniques or evolutionary computing (EC) to modify and optimise composition solutions directly in their tree/graph form, a complex process that requires several constraints to be considered before each alteration. To improve the search efficiency and simplify the checking of constraints, this work proposes an indirect Particle Swarm Optimisation (PSO)-based approach. The key idea of the indirect approach is to optimise a service queue which is then decoded into a composition solution by using a planning algorithm. This approach is compared to a previously proposed graph-based direct representation method, and experiment results show that the indirect representation can lead to a greater (or equivalent) quality while requiring a lower execution time. The analysis conducted shows that this is due to the design of the algorithms used for building and evaluating the fitness of solutions.


Web service composition Particle swarm optimisation Quality of Service Candidate representation 


  1. 1.
    Bansal, A., Blake, M.B., Kona, S., Bleul, S., Weise, T., Jaeger, M.C.: WSC-08: continuing the web services challenge. In: 2008 10th IEEE Conference on E-Commerce Technology and the Fifth IEEE Conference on Enterprise Computing, E-Commerce and E-Services, pp. 351–354. IEEE (2008)Google Scholar
  2. 2.
    Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif. Intell. 90(1), 281–300 (1997)CrossRefzbMATHGoogle Scholar
  3. 3.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware service composition based on genetic algorithms. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM (2005)Google Scholar
  4. 4.
    Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. Web Semant. Sci. Serv. Agents World Wide Web 1(3), 281–308 (2004)CrossRefGoogle Scholar
  5. 5.
    Dustdar, S., Papazoglou, M.P.: Services and service composition-an introduction (services und service komposition-eine einführung). IT - Inf. Technol. (vormals it+ ti) 52(2), 86–92 (2008)CrossRefGoogle Scholar
  6. 6.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)Google Scholar
  7. 7.
    Gottschalk, K., Graham, S., Kreger, H., Snell, J.: Introduction to web services architecture. IBM Syst. J. 41(2), 170–177 (2002)CrossRefGoogle Scholar
  8. 8.
    Grønmo, R., Jaeger, M.C.: Model-driven semantic web service composition. In: 12th Asia-Pacific Software Engineering Conference, APSEC 2005, p. 8. IEEE (2005)Google Scholar
  9. 9.
    Jaeger, M.C., Mühl, G.: Qos-based selection of services: The implementation of a genetic algorithm. In: 2007 ITG-GI Conference on Communication in Distributed Systems (KiVS), pp. 1–12. VDE (2007)Google Scholar
  10. 10.
    Kona, S., Bansal, A., Blake, M.B., Bleul, S., Weise, T.: WSC-2009: a quality of service-oriented web services challenge. In: IEEE Conference on Commerce and Enterprise Computing, CEC 2009, pp. 487–490. IEEE (2009)Google Scholar
  11. 11.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  12. 12.
    Lécué, F., Léger, A.: A formal model for semantic web service composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 385–398. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Ludwig, S., et al.: Applying particle swarm optimization to quality-of-service-driven web service composition. In: 2012 IEEE 26th International Conference on Advanced Information Networking and Applications (AINA), pp. 613–620. IEEE (2012)Google Scholar
  14. 14.
    Menasce, D.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75 (2002)CrossRefGoogle Scholar
  15. 15.
    Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet Comput. 8(6), 51–59 (2004)CrossRefGoogle Scholar
  16. 16.
    Pejman, E., Rastegari, Y., Esfahani, P.M., Salajegheh, A.: Web service composition methods: a survey. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1 (2012)Google Scholar
  17. 17.
    Pistore, M., Barbon, F., Bertoli, P.G., Shaparau, D., Traverso, P.: Planning and monitoring web service composition. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Rodriguez-Mier, P., Mucientes, M., Lama, M., Couto, M.I.: Composition of web services through genetic programming. Evol. Intell. 3(3–4), 171–186 (2010)CrossRefGoogle Scholar
  19. 19.
    Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Webservices composition: a decades overview. Inf. Sci. 280, 218–238 (2014)CrossRefGoogle Scholar
  20. 20.
    da Silva, A.S., Ma, H., Zhang, M.: GraphEvol: a graph evolution technique for web service composition. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 134–142. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  21. 21.
    Tang, M., Ai, L.: A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)Google Scholar
  22. 22.
    Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization using genetic algorithms. IEEE Trans. Evol. Comput. 9(4), 424–435 (2005)CrossRefGoogle Scholar
  23. 23.
    Wang, A., Ma, H., Zhang, M.: Genetic programming with greedy search for web service composition. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 9–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Wang, L., Shen, J., Yong, J.: A survey on bio-inspired algorithms for web service composition. In: IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 569–574. IEEE (2012)Google Scholar
  25. 25.
    Wang, W., Sun, Q., Zhao, X., Yang, F.: An improved particle swarm optimization algorithm for qos-aware web service selection in service oriented communication. Int. J. Comput. Intell. Syst. 3(sup01), 18–30 (2010)CrossRefGoogle Scholar
  26. 26.
    Yu, Y., Ma, H., Zhang, M.: An adaptive genetic programming approach to qos-aware web services composition. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1740–1747. IEEE (2013)Google Scholar
  27. 27.
    Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven web services composition. In: Proceedings of the 12th International Conference on World Wide Web, pp. 411–421. ACM (2003)Google Scholar
  28. 28.
    Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)CrossRefGoogle Scholar
  29. 29.
    Zhao, X., Song, B., Huang, P., Wen, Z., Weng, J., Fan, Y.: An improved discrete immune optimization algorithm based on pso for qos-driven web service composition. Appl. Soft Comput. 12(8), 2208–2216 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexandre Sawczuk da Silva
    • 1
  • Yi Mei
    • 1
  • Hui Ma
    • 1
  • Mengjie Zhang
    • 1
  1. 1.School of Engineering and Computer ScienceVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations