Runtime Clustering of Similarly Behaving Agents in Open Organic Computing Systems

  • Jan KantertEmail author
  • Richard Scharrer
  • Sven Tomforde
  • Sarah Edenhofer
  • Christian Müller-Schloer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9637)


Organic Computing systems are increasingly open for subsystems (or agents) to join and leave. Thereby, we can observe classes of similarly behaving agents, including those that try to exploit or even damage the system. In this paper, we describe a novel concept to cluster agent groups at runtime and to estimate their contribution to the system. The goal is to distinguish between good, suspicious and malicious agent groups to allow for counter measures. We demonstrate the potential benefit of our approach within simulations of a Desktop Grid Computing system that resembles typical Organic Computing characteristics such as self-organisation, adaptive behaviour of heterogeneous agents, and openness.


Agent Group Work Unit Desktop Grid Adaptive Agent Organic Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is funded by the research unit “OC-Trust” (FOR 1085) of the German Research Foundation (DFG).


  1. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer computing. In: Proceedings of CCGRID 2006, pp. 73–80. IEEE, Singapore (2006)Google Scholar
  2. Anglano, C., Brevik, J., Canonico, M., Nurmi, D., Wolski, R.: Fault-aware scheduling for bag-of-tasks applications on desktop grids. In: Proceedings of GRID 2006, pp. 56–63. IEEE, Singapore (2006)Google Scholar
  3. Anglano, C., Canonico, M., Guazzone, M., Botta, M., Rabellino, S., Arena, S., Girardi, G.: Peer-to-peer desktop grids in the real world: the ShareGrid project. In: Proceedings of CCGrid 2008, pp. 609–614 (2008)Google Scholar
  4. Bennett, J.C., Zhang, H.: WF2Q: worst-case fair weighted fair queueing. In: INFOCOM 1996. Proceedings of Fifteenth Annual Joint Conference of the IEEE Computer Societies. Networking the Next Generation, vol. 1, pp. 120–128. IEEE, San Francisco, March 1996Google Scholar
  5. Bernard, Y., Klejnowski, L., Hähner, J., Müller-Schloer, C.: Towards trust in desktop grid systems. In: Proceedings of CCGrid 2010, pp. 637–642 (2010)Google Scholar
  6. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-Cognitive and Computational Model, vol. 18. John Wiley & Sons, Chichester (2010)CrossRefzbMATHGoogle Scholar
  7. Chakravarti, A.J., Baumgartner, G., Lauria, M.: Application-specific scheduling for the organic grid. In: Proceedings of GRID 2004 Workshops, pp. 146–155. IEEE, Washington, DC (2004)Google Scholar
  8. Choi, S., Buyya, R., Kim, H., Byun, E.: A taxonomy of desktop grids and its mapping to state of the art systems. Technical report, Grid Computing and Distributed System Integration, The University of Melbourne (2008)Google Scholar
  9. Choi, S., Kim, H., Byun, E., Baik, M., Kim, S., Park, C., Hwang, C.: Characterizing and classifying desktop grid. In: Proceedings of CCGRID 2007, pp. 743–748. IEEE, Rio de Janeiro (2007)Google Scholar
  10. Demers, A., Keshav, S., Shenker, S.: Analysis and simulation of a fair queueing algorithm. In: Symposium Proceedings on Communications Architectures and Protocols, pp. 1–12. SIGCOMM 1989. ACM, New York (1989)Google Scholar
  11. Domingues, P., Sousa, B., Moura Silva, L.: Sabotage-tolerance and trustmanagement in desktop grid computing. Future Gener. Comput. Syst. 23(7), 904–912 (2007)CrossRefGoogle Scholar
  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, vol. 96, pp. 226–231. The AAAI Press, Menlo Park (1996)Google Scholar
  13. Governatori, G., Rotolo, A.: BIO logical agents: norms, beliefs, intentions in defeasible logic. Auton. Agents Multi-agent Syst. 17(1), 36–69 (2008)CrossRefGoogle Scholar
  14. Hardin, G.: The tragedy of the commons. Science 162(3859), 1243–1248 (1968)CrossRefGoogle Scholar
  15. Hewitt, C.: Open information systems semantics for distributed artificial intelligence. Artif. intell. 47(1), 79–106 (1991)MathSciNetCrossRefGoogle Scholar
  16. Hinneburg, Alexander, Gabriel, Hans-Henning: DENCLUE 2.0: fast clustering based on kernel density estimation. In: Berthold, Michael, Shawe-Taylor, John, Lavrač, Nada (eds.) IDA 2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. Jain, R., Babic, G., Nagendra, B., Lam, C.C.: Fairness, call establishment latency and other performance metrics. ATM-Forum 96(1173), 1–6 (1996)Google Scholar
  18. Kantert, J., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: Defending autonomous agents against attacks in multi-agent systems using norms. In: Proceedings of the 7th International Conference on Agents and Artificial Intelligence, pp. 149–156. INSTICC, SciTePress, Lisbon (2015)Google Scholar
  19. Kantert, J., Scharf, H., Edenhofer, S., Tomforde, S., Hähner, J., Müller-Schloer, C.: A graph analysis approach to detect attacks in multi-agent-systems at runtime. In: 2014 IEEE Eighth International Conference on Self-Adaptive and Self-Organizing Systems, pp. 80–89. IEEE, London (2014)Google Scholar
  20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003)CrossRefGoogle Scholar
  21. Klejnowski, L.: Trusted community: a novel multiagent organisation for OpenDistributed systems. Ph.D. thesis, Leibniz Universität Hannover (2014).
  22. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  23. Muehl, G., Werner, M., Jaeger, M.A., Herrmann, K., Parzyjegla, H.: On the definitions of self-managing and self-organizing systems. In: Communication in Distributed Systems (KiVS), 2007 ITG-GI Conference, pp. 1–11, February 2007Google Scholar
  24. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence. In: CODES and ISSS 2004 Proceedings, pp. 2–5. ACM Press, 8–10 September 2004Google Scholar
  25. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  27. O’Madadhain, J., Fisher, D., Smyth, P., White, S., Boey, Y.B.: Analysis and visualization of network data using JUNG. J. Stat. Softw. 10(2), 1–35 (2005)Google Scholar
  28. Ostrom, E.: Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  29. Pitt, J., Schaumeier, J., Artikis, A.: The axiomatisation of socio-economic principles for self-organising systems. In: 2011 Fifth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 138–147. IEEE, Michigan, October 2011Google Scholar
  30. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)Google Scholar
  31. Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., Richter, U.: Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 5(3), 1–32 (2010)CrossRefGoogle Scholar
  32. Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: a wavelet-based clustering approach for spatial data in very large databases. VLDB J. 8(3–4), 289–304 (2000)CrossRefGoogle Scholar
  33. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell. Law 7(1), 97–113 (1999)CrossRefGoogle Scholar
  34. Tomforde, S., Müller-Schloer, C.: Incremental design of adaptive systems. J. Ambient Intell. Smart Environ. 6, 179–198 (2014)Google Scholar
  35. Tomforde, S., Hähner, J., Seebach, H., Reif, W., Sick, B., Wacker, A., Scholtes, I.: Engineering and mastering interwoven systems. In: ARCS 2014–27th International Conference on Architecture of Computing Systems, Workshop Proceedings. Institute of Computer Engineering, University of Luebeck, Luebeck, pp. 1–8, 25–28 February 2014Google Scholar
  36. Wang, Y., Vassileva, J.: Trust-based community formation in peer-to-peer file sharing networks. In: Proceedings on Web Intelligence, pp. 341–348. IEEE, Beijing, September 2004Google Scholar
  37. Wasserman, S.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  38. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)CrossRefGoogle Scholar
  39. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: ACM SIGMOD Record, vol. 25, pp. 103–114. ACM, Montreal (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jan Kantert
    • 1
    Email author
  • Richard Scharrer
    • 1
  • Sven Tomforde
    • 2
  • Sarah Edenhofer
    • 2
  • Christian Müller-Schloer
    • 1
  1. 1.Institute of Systems EngineeringLeibniz University of HannoverHannoverGermany
  2. 2.Organic Computing GroupUniversity of AugsburgAugsburgGermany

Personalised recommendations