Analysis and Exploitation of CTU-Level Parallelism in the HEVC Mode Decision Process Using Actor-Based Modeling

  • Rafael RosalesEmail author
  • Christian Herglotz
  • Michael Glaß
  • André Kaup
  • Jürgen Teich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9637)


The new High-Efficiency Video Coding (HEVC) standard achieves much better compression ratios than previous ones by offering multiple coding modes, albeit with a significant increase over the required computational power especially at the encoder side. As the first major contribution, we propose a fine-grained parallelization of the encoding mode decision process using a SystemC actor-based model, exploiting multi-core platforms. Second, based on this model, we analyze achievable speedups compared to the single core sequential implementation of the HM-16.0 reference software. Using four different video sequences, we find that our approach achieves an equivalent rate-distortion performance for different quantization parameter values with a simulated encoding time improvement factor of up to \(9\times \) for a maximally parallelized mode decision process. Third, an HEVC encoder has a huge number of different standard-complying encoding modes to choose from for each encoded frame, making the exploration space almost impossible to be fully covered by a brute-force search. Here, we systematically investigate the trade-off in encoding time versus required number of processor cores by proposing a multi-objective Design Space Exploration (DSE) of the mapping of the parallelized mode decision tasks to processing resources, taking as optimization objectives the resulting bitrate, image quality, number of processor cores used, execution time, and total energy consumption.


Video encoding HEVC ESL DSE Parallelization Actor-based modeling Hardware/software co-design 



This work was supported by the Research Training Group 1773 Heterogeneous Image Systems, funded by the German Research Foundation (DFG). We would also like to thank Dr. Muhammad Shafique, researcher at the Karlsruhe Institute of Technology for his valuable feedback.


  1. 1.
    x265 (2014)., Accessed 22 January 2015Google Scholar
  2. 2.
    Bjontegaard, G.: Calculation of average PSNR differences between RD curves, April 2001Google Scholar
  3. 3.
    Blickle, T., Teich, J., Thiele, L.: System-level synthesis using evolutionary algorithms. Des. Autom. Embedded Syst. 3(1), 23–58 (1998)CrossRefGoogle Scholar
  4. 4.
    Bossen, F.: Common test conditions and software reference configurations. Joint Collaborative Team on Video Coding (JCT-VC), JCTVC-F900 (2011)Google Scholar
  5. 5.
    Chen, K., Duan, Y., Sun, J., Guo, Z.: Towards efficient wavefront parallel encoding of HEVC: parallelism analysis and improvement. In: Proceedings of the IEEE 16th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6, September 2014Google Scholar
  6. 6.
    Chi, C.C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., Schierl, T.: Parallel scalability and efficiency of HEVC parallelization approaches. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1827–1838 (2012)CrossRefGoogle Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  8. 8.
    Fuldseth, A., Horowitz, M., Xu, S., Segall, A., Zhou, M.: Tiles. JCTVC-F335, July 2011Google Scholar
  9. 9.
    Haubelt, C., Falk, J., Keinert, J., Schlichter, T., Streubühr, M., Deyhle, A., Hadert, A., Teich, J.: A SystemC-based design methodology for digital signal processing systems. EURASIP J. Embedded Syst. 2007(1), 15 (2007)Google Scholar
  10. 10.
    Heng, T.K., Asano, W., Itoh, T., Tanizawa, A., Yamaguchi, J., Matsuo, T., Kodama, T.: A highly parallelized H.265/HEVC real-time UHD software encoder. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1213–1217, October 2014Google Scholar
  11. 11.
    Henry, F., Pateux, S.: Wavefront parallel processing. Joint Collaborative Team on Video Coding (JCT-VC), Document JCTVC-E196, Geneva (2011)Google Scholar
  12. 12.
    ITU-T: Recommendation H.265, April 2013.
  13. 13.
    ITU/ISO/IEC: HEVC Test Model HM16.0 (2014).
  14. 14.
    Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J - a modular framework for meta-heuristic optimization. In: Proceedings of the Genetic and Evolutionary Computing Conference (GECCO 2011), Dublin, Ireland, pp. 1723–1730 (2011)Google Scholar
  15. 15.
    Misra, K., Segall, A., Horowitz, M., Xu, S., Fuldseth, A., Zhou, M.: An overview of tiles in HEVC. IEEE J. Sel. Top. Sign. Proces. 7(6), 969–977 (2013)CrossRefGoogle Scholar
  16. 16.
    Radicke, S., Hahn, J., Grecos, C., Wang, Q.: A highly-parallel approach on motion estimation for high efficiency video coding (HEVC). In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 187–188, January 2014Google Scholar
  17. 17.
    Rosales, R., Glass, M., Teich, J., Wang, B., Xu, Y., Hasholzner, R.: MAESTRO- holistic actor-oriented modeling of nonfunctional properties and firmware behavior for MPSoCs. ACM Trans. Des. Autom. Electron. Syst. 19(3), 23:1–23:26 (2014)CrossRefGoogle Scholar
  18. 18.
    Shafique, M., Khan, M., Henkel, J.: Power efficient and workload balanced tiling for parallelized high efficiency video coding. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1253–1257, October 2014Google Scholar
  19. 19.
    Streubühr, M., Rosales, R., Hasholzner, R., Haubelt, C., Teich, J.: ESL power and performance estimation for heterogeneous MPSoCS using SystemC. In: FDL, pp. 1–8 (2011)Google Scholar
  20. 20.
    Sullivan, G., Ohm, J., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  21. 21.
    Wang, X., Song, L., Chen, M., Yang, J.: Paralleling variable block size motion estimation of HEVC on multi-core CPU plus GPU platform. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1836–1839, September 2013Google Scholar
  22. 22.
    Zhang, J., Dai, F., Ma, Y., Zhang, Y.: Highly parallel mode decision method for HEVC. In: Proceedings of the Picture Coding Symposium (PCS), pp. 281–284, December 2013Google Scholar
  23. 23.
    Zhang, S., Zhang, X., Gao, Z.: Implementation and improvement of wavefront parallel processing for HEVC encoding on many-core platform. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–6, July 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rafael Rosales
    • 1
    Email author
  • Christian Herglotz
    • 1
  • Michael Glaß
    • 1
  • André Kaup
    • 1
  • Jürgen Teich
    • 1
  1. 1.Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations