Language Models for Collaborative Filtering Neighbourhoods

  • Daniel ValcarceEmail author
  • Javier Parapar
  • Álvaro Barreiro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)


Language Models are state-of-the-art methods in Information Retrieval. Their sound statistical foundation and high effectiveness in several retrieval tasks are key to their current success. In this paper, we explore how to apply these models to deal with the task of computing user or item neighbourhoods in a collaborative filtering scenario. Our experiments showed that this approach is superior to other neighbourhood strategies and also very efficient. Our proposal, in conjunction with a simple neighbourhood-based recommender, showed a great performance compared to state-of-the-art methods (NNCosNgbr and PureSVD) while its computational complexity is low.


Recommender systems Language models Collaborative filtering Neighbourhood 



This work was supported by the Ministerio de Economía y Competitividad of the Goverment of Spain under grants TIN2012-33867 and TIN2015-64282-R. The first author also wants to acknowledge the support of Ministerio de Educación, Cultura y Deporte of the Government of Spain under the grant FPU014/01724.


  1. 1.
    Bellogín, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems. In: RecSys 2011, p. 333. ACM (2011)Google Scholar
  2. 2.
    Bellogín, A., Parapar, J., Castells, P.: Probabilistic collaborative filtering with negative cross entropy. In: RecSys 2013, pp. 387–390. ACM (2013)Google Scholar
  3. 3.
    Bellogín, A., Wang, J., Castells, P.: Bridging memory-based collaborative filtering and text retrieval. Inf. Retr. 16(6), 697–724 (2013)CrossRefGoogle Scholar
  4. 4.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-N recommendation tasks. In: RecSys 2010, pp. 39–46. ACM (2010)Google Scholar
  5. 5.
    Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)CrossRefGoogle Scholar
  6. 6.
    Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Fleder, D., Hosanagar, K.: Blockbuster culture’s next rise or fall: the impact of recommender systems on sales diversity. Manage. Sci. 55(5), 697–712 (2009)CrossRefGoogle Scholar
  8. 8.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., John, T.: Riedl.: evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  9. 9.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD 2008, pp. 426–434. ACM (2008)Google Scholar
  10. 10.
    Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Losada, D.E., Azzopardi, L.: An analysis on document length retrieval trends in language modeling smoothing. Inf. Retr. 11(2), 109–138 (2008)CrossRefGoogle Scholar
  12. 12.
    Losada, D.E., Azzopardi, L.: Assessing multivariate bernoulli models for information retrieval. ACM Trans. Inf. Syst. 26(3), 17:1–17:46 (2008)CrossRefGoogle Scholar
  13. 13.
    Parapar, J., Bellogín, A., Castells, P., Barreiro, Á.: Relevance-based language modelling for recommender systems. Inf. Process. Manage. 49(4), 966–980 (2013)CrossRefGoogle Scholar
  14. 14.
    Ponte, J.M., Bruce Croft, W.: A language modeling approach to information retrieval. In: SIGIR 1998, pp. 275–281. ACM (1998)Google Scholar
  15. 15.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  17. 17.
    Valcarce, D.: Exploring statistical language models for recommender systems. In: RecSys 2015, pp. 375–378. ACM (2015)Google Scholar
  18. 18.
    Valcarce, D., Parapar, J., Barreiro, Á.: A study of priors for relevance-based language modelling of recommender systems. In: RecSys 2015, pp. 237–240. ACM (2015)Google Scholar
  19. 19.
    Valcarce, D., Parapar, J., Barreiro, A.: A study of smoothing methods for relevance-based language modelling of recommender systems. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 346–351. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Wang, J., de Vries, A.P., Reinders, M.J.T.: A user-item relevance model for log-based collaborative filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Wang, L., Li, Y., He, D., Chen, W., Liu, T.-Y.: A theoretical analysis of NDCG ranking measures. In: COLT 2013, pp. 1–30 (2013).
  22. 22.
    Zhai, C.: Statistical Language Models for Information Retrieval. Synthesis Lectures on Human Language Technologies. Morgan & Claypool, San Rafael (2009)Google Scholar
  23. 23.
    Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inf. Syst. 22(2), 179–214 (2004)CrossRefGoogle Scholar
  24. 24.
    Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J.R., Zhang, Y.-C.: Solving the apparent diversity-accuracy dilemma of recommender systems. PNAS 107(10), 4511–4515 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Daniel Valcarce
    • 1
    Email author
  • Javier Parapar
    • 1
  • Álvaro Barreiro
    • 1
  1. 1.Information Retrieval Lab, Computer Science DepartmentUniversity of A CoruñaA CoruñaSpain

Personalised recommendations