Advertisement

Inferring Implicit Topical Interests on Twitter

  • Fattane Zarrinkalam
  • Hossein Fani
  • Ebrahim Bagheri
  • Mohsen Kahani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)

Abstract

Inferring user interests from their activities in the social network space has been an emerging research topic in the recent years. While much work is done towards detecting explicit interests of the users from their social posts, less work is dedicated to identifying implicit interests, which are also very important for building an accurate user model. In this paper, a graph based link prediction schema is proposed to infer implicit interests of the users towards emerging topics on Twitter. The underlying graph of our proposed work uses three types of information: user’s followerships, user’s explicit interests towards the topics, and the relatedness of the topics. To investigate the impact of each type of information on the accuracy of inferring user implicit interests, different variants of the underlying representation model are investigated along with several link prediction strategies in order to infer implicit interests. Our experimental results demonstrate that using topics relatedness information, especially when determined through semantic similarity measures, has considerable impact on improving the accuracy of user implicit interest prediction, compared to when followership information is only used.

Keywords

Implicit interest Twitter Topic relatedness Collaborative filtering 

References

  1. 1.
    Abel, F., Gao, Q., Houben, G.-J., Tao, K.: Analyzing user modeling on twitter for personalized news recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Goker, A., Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. IEEE Trans. Multimedia 15(6), 1268–1282 (2013)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, P., Muhammad, B.Z., Ganguly, N., Ghosh, S., Gummadi, K.P.: Inferring user interests in the twitter social network. In: RecSys 2014, pp. 357–360 (2014)Google Scholar
  4. 4.
    Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based on temporal and social terms evaluation. In: IMDMKDD 2010, p. 4 (2010)Google Scholar
  5. 5.
    Cheng, X., Yan, X., Lan, Y., Guo, J.: Btm: Topic modeling over short texts. IEEE Trans. Knowl. Data Eng. 26(12), 2928–2941 (2014)CrossRefGoogle Scholar
  6. 6.
    Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML 2006, pp. 233–240 (2006)Google Scholar
  7. 7.
    Fani, H., Zarrinkalam, F., Zhao, X., Feng, Y., Bagheri, E., Du, W.: Temporal identification of latent communities on twitter (2015). arXiv preprint arxiv:1509.04227
  8. 8.
    Ferragina, P., Scaiella, U.: Fast and accurate annotation of short texts with wikipedia pages. IEEE Softw. 29(1), 70–75 (2012)CrossRefGoogle Scholar
  9. 9.
    Kabbur, S., Ning, X., Karypis, G.: FISM: factored item similarity models for top-N recommender systems. In: KDD 2013, pp. 659–667 (2013)Google Scholar
  10. 10.
    Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 99–113. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  12. 12.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social networks. Ann. Rev. Sociol. 27, pp. 415–444 (2001)Google Scholar
  13. 13.
    Michelson, M., Macskassy, S.A.: Discovering users’ topics of interest on twitter: A first look. In: AND 2010, pp. 73–80 (2010)Google Scholar
  14. 14.
    Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: inferring user profiles in online social networks. In: WSDM 2010, pp. 251–260 (2010)Google Scholar
  15. 15.
    Shin, Y., Ryo, C., Park, J.: Automatic extraction of persistent topics from social text streams. World Wide Web 17(6), 1395–1420 (2014)CrossRefGoogle Scholar
  16. 16.
    Wang, J., Zhao, W.X., He, Y., Li, X.: Infer user interests via link structure regularization. TIST 5(2), 23 (2014)CrossRefGoogle Scholar
  17. 17.
    Witten, I., Milne, D.: An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In: WikiAI 2008, pp. 25–30 (2008)Google Scholar
  18. 18.
    Xu, Z., Lu, R., Xiang, L., Yang, Q.: Discovering user interest on twitter with a modified author-topic model. In: WI-IAT 2011, vol. 1, pp. 422–429 (2011)Google Scholar
  19. 19.
    Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual role affect hashtag adoption? In: WWW 2012, pp. 261–270 (2012)Google Scholar
  20. 20.
    Yu, Y., Wang, C., Gao, Y.: Attributes coupling based item enhanced matrix factorization technique for recommender systems. arXiv preprint. (2014). arxiv:1405.0770
  21. 21.
    Zarrinkalam, F., Fani, H., Bagheri, E., Kahani, M., Du, W.: Semantics-enabled user interest detection from twitter. In: WI-IAT 2015 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fattane Zarrinkalam
    • 1
    • 2
  • Hossein Fani
    • 1
    • 3
  • Ebrahim Bagheri
    • 1
  • Mohsen Kahani
    • 2
  1. 1.Laboratory for Systems, Software and Semantics (LS3)Ryerson UniversityTorontoCanada
  2. 2.Department of Computer EngineeringFerdowsi University of MashhadMashhadIran
  3. 3.Faculty of Computer ScienceUniversity of New BrunswickNew BrunswickCanada

Personalised recommendations