Experiments in Newswire Summarisation

  • Stuart Mackie
  • Richard McCreadie
  • Craig Macdonald
  • Iadh Ounis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)


In this paper, we investigate extractive multi-document summarisation algorithms over newswire corpora. Examining recent findings, baseline algorithms, and state-of-the-art systems is pertinent given the current research interest in event tracking and summarisation. We first reproduce previous findings from the literature, validating that automatic summarisation evaluation is a useful proxy for manual evaluation, and validating that several state-of-the-art systems with similar automatic evaluation scores create different summaries from one another. Following this verification of previous findings, we then reimplement various baseline and state-of-the-art summarisation algorithms, and make several observations from our experiments. Our findings include: an optimised Lead baseline; indication that several standard baselines may be weak; evidence that the standard baselines can be improved; results showing that the most effective improved baselines are not statistically significantly less effective than the current state-of-the-art systems; and finally, observations that manually optimising the choice of anti-redundancy components, per topic, can lead to improvements in summarisation effectiveness.


  1. 1.
    Allan, J., Wade, C., Bolivar, A.: Retrieval and novelty detection at the sentence level. In: Proceedings of SIGIR (2003)Google Scholar
  2. 2.
    Conroy, J.M., Schlesinger, J.D., O’Leary, D.P.: Topic-focused multi-document summarization using an approximate oracle score. In: Proceedings of COLING-ACL (2006)Google Scholar
  3. 3.
    Erkan, G., Radev, D.R.: LexRank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 22(1), 457–479 (2004)Google Scholar
  4. 4.
    Gillick, D., Favre, B.: A scalable global model for summarization. In: Proceedings of ACL ILP-NLP (2009)Google Scholar
  5. 5.
    Guo, Q., Diaz, F., Yom-Tov, E.: Updating users about time critical events. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 483–494. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Haghighi, A., Vanderwende, L.: Exploring content models for multi-document summarization. In: Proceedings of NAACL-HLT (2009)Google Scholar
  7. 7.
    Hong, K., Conroy, J., Favre, B., Kulesza, A., Lin, H., Nenkova, A.: A repository of state of the art and competitive baseline summaries for generic news summarization. In: Proceedings of LREC (2014)Google Scholar
  8. 8.
    Kedzie, C., McKeown, K., Diaz, F.: Predicting salient updates for disaster summarization. In: Proceedings of ACL-IJCNLP (2015)Google Scholar
  9. 9.
    Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In: Proceedings of ACL (2004)Google Scholar
  10. 10.
    Lin, C.Y., Hovy, E.: The automated acquisition of topic signatures for text summarization. In: Proceedings of COLING (2000)Google Scholar
  11. 11.
    Mackie, S., McCreadie, R., Macdonald, C., Ounis, I.: Comparing algorithms for microblog summarisation. In: Kanoulas, E., Lupu, M., Clough, P., Sanderson, M., Hall, M., Hanbury, A., Toms, E. (eds.) CLEF 2014. LNCS, vol. 8685, pp. 153–159. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Mackie, S., McCreadie, R., Macdonald, C., Ounis, I.: On choosing an effective automatic evaluation metric for microblog summarisation. In: Proceedings of IIiX (2014)Google Scholar
  13. 13.
    McCreadie, R., Macdonald, C., Ounis, I.: Incremental update summarization: Adaptive sentence selection based on prevalence and novelty. In: Proceedings of CIKM (2014)Google Scholar
  14. 14.
    Nenkova, A.: Automatic text summarization of newswire: Lessons learned from the document understanding conference. In: Proceedings of AAAI (2005)Google Scholar
  15. 15.
    Nenkova, A., McKeown, K.: Automatic summarization. Found. Trends Inf. Retrieval 5(2–3), 103–233 (2011)CrossRefGoogle Scholar
  16. 16.
    Nenkova, A., Vanderwende, L., McKeown, K.: A compositional context sensitive multi-document summarizer: Exploring the factors that influence summarization. In: Proceedings of SIGIR (2006)Google Scholar
  17. 17.
    Owczarzak, K., Conroy, J.M., Dang, H.T., Nenkova, A.: An assessment of the accuracy of automatic evaluation in summarization. In: Proceedings of NAACL-HLT WEAS (2012)Google Scholar
  18. 18.
    Radev, D.R., Jing, H., Styś, M., Tam, D.: Centroid-based summarization of multiple documents. Inf. Process. Manage. 40(6), 919–938 (2004)CrossRefMATHGoogle Scholar
  19. 19.
    K, Spärck Jones: Automatic summarising: The state-of-the-art. Inf. Process. Manage. 43(6), 1449–1481 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stuart Mackie
    • 1
  • Richard McCreadie
    • 1
  • Craig Macdonald
    • 1
  • Iadh Ounis
    • 1
  1. 1.School of Computing ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations