Scheduling in Heterogeneous Networks Using Grammar-Based Genetic Programming

  • David LynchEmail author
  • Michael Fenton
  • Stepan Kucera
  • Holger Claussen
  • Michael O’Neill
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9594)


Effective scheduling in Heterogeneous Networks is key to realising the benefits from enhanced Inter-Cell Interference Coordination. In this paper we address the problem using Grammar-based Genetic Programming. Our solution executes on a millisecond timescale so it can track with changing network conditions. Furthermore, the system is trained using only those measurement statistics that are attainable in real networks. Finally, the solution generalises well with respect to dynamic traffic and variable cell placement. Superior results are achieved relative to a benchmark scheme from the literature, illustrating an opportunity for the further use of Genetic Programming in software-defined autonomic wireless communications networks.


Scheduling Heterogeneous networks Grammar-based genetic programming 



This research is based upon works supported by the Science Foundation Ireland under grant 13/IA/1850.


  1. 1.
    3Gpp, December 2014.
  2. 2.
    Google Maps, December 2014Google Scholar
  3. 3.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019. Cisco, White Paper (2015)Google Scholar
  4. 4.
    Small Cell Solutions. Alcatel-Lucent (2015).
  5. 5.
    Alfaro-Cid, E., Sharman, K., Esparcia-Alcázar, A.I.: Genetic programming and serial processing for time series classification. Evol. Comput. 22(2), 265–285 (2014)CrossRefGoogle Scholar
  6. 6.
    Bader-El-Den, M., Fatima, S.: Genetic programming for auction based scheduling. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 256–267. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., Sukhavasi, R., Patel, C., Geirhofer, S.: Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. 52(2), 82–89 (2014)CrossRefGoogle Scholar
  8. 8.
    Bian, Y.Q., Rao, D.: Small Cells Big Opportunities. Global Business Consulting. Huawei Technologies Co., Ltd. (2014)Google Scholar
  9. 9.
    Brabazon, A., O’Neill, M., McGarraghy, S.: Natural Computing Algorithms. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Conrads, M., Nordin, P., Banzhaf, W.: Speech sound discrimination with genetic programming. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 113–129. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., Yoo, T., Song, O., Malladi, D.: A survey on 3GPP heterogeneous networks. IEEE Wirel. Commun. 18(3), 10–21 (2011)CrossRefGoogle Scholar
  12. 12.
    Deb, S., Monogioudis, P., Miernik, J., Seymour, J.P.: Algorithms for enhanced inter-cell interference coordination (eICIC) in LTE HetNets. IEEE/ACM Trans. Netw. (TON) 22(1), 137–150 (2014)CrossRefGoogle Scholar
  13. 13.
    Dempsey, I., O’Neill, M., Brabazon, A.: Grammatical evolution. In: Dempsey, I., O’Neill, M., Brabazon, A. (eds.) Foundations in Grammatical Evolution for Dynamic Environments. SCI, vol. 194, pp. 9–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fenton, M., Lynch, D., Kucera, S., Claussen, H., O’Neill, M.: Evolving coverage optimisation functions for heterogeneous networks using grammatical genetic programming. In: Proceedings of the 19th International Conference on the Applications of Evolutionary Computation, EvoCOMNET 2016. Springer (2016)Google Scholar
  16. 16.
    Hansen, J.V.: Genetic search methods in air traffic control. Comput. Oper. Res. 31(3), 445–459 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A symbolic regression approach to manage femtocell coverage using grammatical genetic programming. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 639–646. ACM (2011)Google Scholar
  18. 18.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: Evolving femtocell algorithms with dynamic and stationary training scenarios. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 518–527. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Hemberg, E., Ho, L., O’Neill, M., Claussen, H.: A comparison of grammatical genetic programming grammars for controlling femtocell network coverage. Genet. Program Evolvable Mach. 14(1), 65–93 (2013)CrossRefGoogle Scholar
  20. 20.
    Ho, L.T., Ashraf, I., Claussen, H.: Evolving femtocell coverage optimization algorithms using genetic programming. In: 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2132–2136. IEEE (2009)Google Scholar
  21. 21.
    Jakobović, D., Marasović, K.: Evolving priority scheduling heuristics with genetic programming. Appl. Soft Comput. 12(9), 2781–2789 (2012)CrossRefGoogle Scholar
  22. 22.
    Jiang, L., Lei, M.: Resource allocation for eICIC scheme in heterogeneous networks. In: 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 448–453. IEEE (2012)Google Scholar
  23. 23.
    Jones, A., Rabelo, L.C., Sharawi, A.T.: Survey of job shop scheduling techniques In: Wiley Encyclopedia of Electrical and Electronics Engineering (1999)Google Scholar
  24. 24.
    López-Pérez, D., Claussen, H.: Duty cycles and load balancing in hetnets with eICIC almost blank subframes. In: 2013 IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC Workshops), pp. 173–178. IEEE (2013)Google Scholar
  25. 25.
    Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic programming: a survey. Genet. Program Evolvable Mach. 11(3–4), 365–396 (2010)CrossRefGoogle Scholar
  26. 26.
    Pang, J., Wang, J., Wang, D., Shen, G., Jiang, Q., Liu, J.: Optimized time-domain resource partitioning for enhanced inter-cell interference coordination in heterogeneous networks. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1613–1617. IEEE (2012)Google Scholar
  27. 27.
    Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sun, J., Modiano, E., Zheng, L.: Wireless channel allocation using an auction algorithm. IEEE J. Sel. Areas Commun. 24(5), 1085–1096 (2006)CrossRefGoogle Scholar
  29. 29.
    Tall, A., Altman, Z., Altman, E.: Self organizing strategies for enhanced ICIC (eICIC). In: 2014 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 318–325. IEEE (2014)Google Scholar
  30. 30.
    Weber, A., Stanze, O.: Scheduling strategies for HetNets using eICIC. In: 2012 IEEE International Conference on Communications (ICC), pp. 6787–6791. IEEE (2012)Google Scholar
  31. 31.
    Yang, S., Ong, Y.S., Jin, Y.: Evolutionary Computation in Dynamic and Uncertain Environments. Springer Science & Business Media, New York (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David Lynch
    • 1
    Email author
  • Michael Fenton
    • 1
  • Stepan Kucera
    • 2
  • Holger Claussen
    • 2
  • Michael O’Neill
    • 1
  1. 1.Natural Computing Research and Applications GroupUCDDublinIreland
  2. 2.Bell LaboratoriesNOKIADublinIreland

Personalised recommendations