Identifying Key Opinion Leaders in Evolving Co-authorship Networks—A Descriptive Study of a Proxy Variable for Betweenness Centrality

  • Johannes Putzke
  • Hideaki Takeda
Part of the Studies in Computational Intelligence book series (SCI, volume 644)


Many researchers identify influentials in a network by their betweenness centrality. Whereas betweenness centrality can be calculated in small, static, connected networks, its calculation in complex, large, evolving networks frequently causes some problems. Hence, we propose a proxy variable for a node’s betweenness centrality that can be calculated in large, evolving networks. We illustrate our approach using the example of Key Opinion Leader (KOL) identification in an evolving co-authorship network of researchers who have published articles about PCSK9 (a protein that regulates cholesterol levels).


Betweenness Centrality Collaboration Network Proxy Variable Real World Network Giant Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a fellowship within the FITweltweit programme of the German Academic Exchange Service (DAAD).


  1. 1.
    Aggarwal, C., Subbian, K.: Evolutionary network analysis: a survey. ACM Comput. Surv. 47(1), 10 (2014). doi: 10.1145/2601412
  2. 2.
    Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large social networks: membership, growth, and evolution. In: Paper presented at the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USAGoogle Scholar
  3. 3.
    Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Algorithms and Models for the Web-Graph, pp. 124–137. Springer, (2007)Google Scholar
  4. 4.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). doi: 10.1126/science.286.5439.509 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barabási, A.L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3–4), 590–614 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Breiger, R.L., Pattison, P.E.: Cumulated social roles—the duality of persons and their algebras. Soc. Netw. 8(3), 215–256 (1986). doi: 10.1016/0378-8733(86)90006-7 CrossRefGoogle Scholar
  8. 8.
    Butts, C.T.: Social network analysis with sna. J. Stat. Softw. 24(6), 1–51 (2008)CrossRefGoogle Scholar
  9. 9.
    Czárdi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal, Complex Syst. 1695 (2006)Google Scholar
  10. 10.
    Ediger, D., Jiang, K., Riedy, J., Bader, D., Corley, C., Farber, R., Reynolds, W.N.: Massive social network analysis: mining twitter for social good. In: Paper presented at the 39th International Conference on Parallel Processing (ICPP) San Diego, CAGoogle Scholar
  11. 11.
    Franceschet, M.: Collaboration in computer science: a network science approach. J. Am. Soc. Inform. Sci. Technol. 62(10), 1992–2012 (2011). doi: 10.1002/asi.21614 CrossRefGoogle Scholar
  12. 12.
    Freeman, L.C.: Set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977). doi: 10.2307/3033543 CrossRefGoogle Scholar
  13. 13.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1979). doi: 10.1016/0378-8733(78)90021-7 CrossRefGoogle Scholar
  14. 14.
    Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78(6), 1360–1380 (1973). doi: 10.1086/225469 CrossRefGoogle Scholar
  15. 15.
    Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001). doi: 10.1038/35075138 CrossRefGoogle Scholar
  16. 16.
    Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley Reading (1993)Google Scholar
  17. 17.
    Liu, P., Xia, H.: Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics 103(1), 101–134 (2015). doi: 10.1007/s11192-014-1525-y MathSciNetCrossRefGoogle Scholar
  18. 18.
    McLaughlin, A., Bader, D.A.: Scalable and high performance betweenness centrality on the GPU. In: Paper presented at the International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LouisanaGoogle Scholar
  19. 19.
    Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? comparing data from Twitter’s streaming API with Twitter’s firehose. In: Paper presented at the International AAAI Conference on Web and Social Media, Cambridge, MassachusettsGoogle Scholar
  20. 20.
    Newman, M.E.: Scientific collaboration networks—I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)Google Scholar
  21. 21.
    Newman, M.E.: Scientific collaboration networks—II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)Google Scholar
  22. 22.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. USA 98(2), 404–409 (2001). doi: 10.1073/pnas.021544898 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Newman, M.E.J.: Coauthorship networks and patterns of scientific collaboration. Proc. Nat. Acad. Sci. 101(suppl 1), 5200–5205 (2004). doi: 10.1073/pnas.0307545100 CrossRefGoogle Scholar
  24. 24.
    Shi, X., Bonner, M., Adamic, L.A., Gilbert, A.C.: The very small world of the well-connected. In: Paper presented at the Nineteenth ACM Conference on Hypertext and Hypermedia, Pittsburgh, PA, USAGoogle Scholar
  25. 25.
    Spearman, C.: The proof and measurement of association between 2 Things (Reprinted from Amer. J. Psychol. vol. 15, pp. 72–101, 1904). Am. J. Psychol 100(3–4), 441–471 (1987)CrossRefGoogle Scholar
  26. 26.
    Tomassini, M., Luthi, L.: Empirical analysis of the evolution of a scientific collaboration network. Physica A 385(2), 750–764 (2007)CrossRefGoogle Scholar
  27. 27.
    Vidgen, R., Henneberg, S., Naude, P.: What sort of community is the European Conference on information systems? a social network analysis 1993–2005. Eur. J. Inf. Syst. 16(1), 5–19 (2007)Google Scholar
  28. 28.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998). doi: 10.1038/30918 CrossRefGoogle Scholar
  29. 29.
    Yan, E., Ding, Y.: Applying centrality measures to impact analysis: a coauthorship network analysis. J. Am. Soc. Inform. Sci. Technol. 60(10), 2107–2118 (2009). doi: 10.1002/asi.21128 CrossRefGoogle Scholar
  30. 30.
    Yang, J., Chen, Y.: Fast computing betweenness centrality with virtual nodes on large sparse networks. PLoS ONE 6(7), e22557 (2011). doi: 10.1371/journal.pone.0022557 CrossRefGoogle Scholar
  31. 31.
    Yang, Y., Dong, Y., Chawla, N.V.: Predicting node degree centrality with the node prominence profile. Sci. Rep. 4(7236) (2014). doi: 10.1038/srep07236

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.National Institute of InformaticsChiyodaJapan

Personalised recommendations