Sperm Capacitation and Acrosome Reaction in Mammalian Sperm

  • Cintia Stival
  • Lis del C. Puga Molina
  • Bidur Paudel
  • Mariano G. Buffone
  • Pablo E. Visconti
  • Dario Krapf
Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 220)

Abstract

Physiological changes that endow mammalian sperm with fertilizing capacity are known as sperm capacitation. As part of capacitation, sperm develop an asymmetrical flagellar beating known as hyperactivation and acquire the ability to undergo the acrosome reaction. Together, these processes promote fertilizing competence in sperm. At the molecular level, capacitation involves a series of signal transduction events which include activation of cAMP-dependent phosphorylation pathways, removal of cholesterol, hyperpolarization of the sperm plasma membrane, and changes in ion permeability. In recent years, new technologies have aided in the study of sperm signaling molecules with better resolution, at both spatial and temporal levels, unraveling how different cascades integrate and cooperate to render a fertilizing sperm. Despite this new information, the molecular mechanisms connecting capacitation with acrosomal exocytosis and hyperactivation are not well understood. This review brings together results obtained in mammalian species in the field of sperm capacitation with special focus on those pathways involved in the preparation to undergo the acrosomal reaction.

Notes

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica de Argentina PICT 2014-2702 (to DK) and PICT 2012-1175 (to MGB); NIH R01 HD44044 and HD038082 (to PEV), R01-TW008662 (to MGB); and the National Research Council of Argentina PIP 112-201101-00740 (to MGB and DK).

References

  1. Aitken RJ, Nixon B (2013) Sperm capacitation: a distant landscape glimpsed but unexplored. Mol Hum Reprod 19:785–793CrossRefPubMedGoogle Scholar
  2. Arcelay E, Salicioni AM, Wertheimer E, Visconti PE (2008) Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol 52:463–472CrossRefPubMedGoogle Scholar
  3. Arnoult C, Cardullo RA, Lemos JR, Florman HM (1996) Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida. Proc Natl Acad Sci U S A 93:13004–13009CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnoult C, Kazam IG, Visconti PE, Kopf GS, Villaz M, Florman HM (1999) Control of the low voltage-activated calcium channel of mouse sperm by egg ZP3 and by membrane hyperpolarization during capacitation. Proc Natl Acad Sci U S A 96:6757–6762CrossRefPubMedPubMedCentralGoogle Scholar
  5. Austin CR (1952) The capacitation of the mammalian sperm. Nature 170:326CrossRefPubMedGoogle Scholar
  6. Bailey JL (2010) Factors regulating sperm capacitation. Syst Biol Reprod Med 56:334–348CrossRefPubMedGoogle Scholar
  7. Baker MA, Hetherington L, Aitken RJ (2006) Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 119:3182–3192CrossRefPubMedGoogle Scholar
  8. Battistone MA, Da Ros VG, Salicioni AM, Navarrete FA, Krapf D, Visconti PE, Cuasnicu PS (2013) Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod 19:570–580CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bragado MJ, Gil MC, Martin-Hidalgo D, Hurtado DL, Bravo N, Moreno AD, Garcia-Marin LJ (2012) Src family tyrosine kinase regulates acrosome reaction but not motility in porcine spermatozoa. Reproduction 144:67–75CrossRefPubMedGoogle Scholar
  10. Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krahling M, Muller A, Kaupp UB, Strunker T (2012) The CatSper channel: a polymodal chemosensor in human sperm. EMBO J 31:1654–1665CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brenker C, Zhou Y, Muller A, Echeverry FA, Trotschel C, Poetsch A, Xia XM, Bonigk W, Lingle CJ, Kaupp UB, Strunker T (2014) The Ca2 + -activated K+ current of human sperm is mediated by Slo3. Elife 3, e01438CrossRefPubMedPubMedCentralGoogle Scholar
  12. Buffone MG, Ijiri TW, Cao W, Merdiushev T, Aghajanian HK, Gerton GL (2012) Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol Reprod Dev 79:4–18CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buffone MG, Wertheimer EV, Visconti PE, Krapf D (2014) Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta 1842:2610–2620CrossRefPubMedPubMedCentralGoogle Scholar
  14. Butterworth MB (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802:1166–1177CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168:697–698CrossRefPubMedGoogle Scholar
  16. Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 184(Suppl 7):466–467CrossRefPubMedGoogle Scholar
  17. Chavez JC, Hernandez-Gonzalez EO, Wertheimer E, Visconti PE, Darszon A, Trevino CL (2012) Participation of the Cl-/HCO(3)- exchangers SLC26A3 and SLC26A6, the Cl- channel CFTR, and the regulatory factor SLC9A3R1 in mouse sperm capacitation. Biol Reprod 86:1–14CrossRefPubMedGoogle Scholar
  18. Chavez JC, De La Vega-Beltran JL, Escoffier J, Visconti PE, Trevino CL, Darszon A, Salkoff L, Santi CM (2013) Ion permeabilities in mouse sperm reveal an external trigger for SLO3-dependent hyperpolarization. PLoS One 8, e60578CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628CrossRefPubMedGoogle Scholar
  20. Chen WY, Xu WM, Chen ZH, Ni Y, Yuan YY, Zhou SC, Zhou WW, Tsang LL, Chung YW, Hoglund P, Chan HC, Shi QX (2009) Cl- is required for HCO3- entry necessary for sperm capacitation in guinea pig: involvement of a Cl-/HCO3- exchanger (SLC26A3) and CFTR. Biol Reprod 80:115–123CrossRefPubMedGoogle Scholar
  21. Chung JJ, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE (2011) A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat Commun 2:153CrossRefPubMedPubMedCentralGoogle Scholar
  22. De La Vega-Beltran JL, Sanchez-Cardenas C, Krapf D, Hernandez-Gonzalez EO, Wertheimer E, Trevino CL, Visconti PE, Darszon A (2012) Mouse sperm membrane potential hyperpolarization is necessary and sufficient to prepare sperm for the acrosome reaction. J Biol Chem 287:44384–44393CrossRefGoogle Scholar
  23. Demarco IA, Espinosa F, Edwards J, Sosnik J, De La Vega-Beltran JL, Hockensmith JW, Kopf GS, Darszon A, Visconti PE (2003) Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation. J Biol Chem 278:7001–7009CrossRefPubMedGoogle Scholar
  24. Escoffier J, Boisseau S, Serres C, Chen CC, Kim D, Stamboulian S, Shin HS, Campbell KP, De Waard M, Arnoult C (2007) Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice. J Cell Physiol 212:753–763CrossRefPubMedGoogle Scholar
  25. Escoffier J, Krapf D, Navarrete F, Darszon A, Visconti PE (2012) Flow cytometry analysis reveals a decrease in intracellular sodium during sperm capacitation. J Cell Sci 125:473–485CrossRefPubMedPubMedCentralGoogle Scholar
  26. Escoffier J, Navarrete F, Haddad D, Santi CM, Darszon A, Visconti PE (2015) Flow cytometry analysis reveals that only a subpopulation of mouse sperm undergoes hyperpolarization during capacitation. Biol Reprod 92:121CrossRefPubMedPubMedCentralGoogle Scholar
  27. Espinosa F, Darszon A (1995) Mouse sperm membrane potential: changes induced by Ca2+. FEBS Lett 372:119–125CrossRefPubMedGoogle Scholar
  28. Etkovitz N, Tirosh Y, Chazan R, Jaldety Y, Daniel L, Rubinstein S, Breitbart H (2009) Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev Biol 334:447–457CrossRefPubMedGoogle Scholar
  29. Florman HM, Corron ME, Kim TD, Babcock DF (1992) Activation of voltage-dependent calcium channels of mammalian sperm is required for zona pellucida-induced acrosomal exocytosis. Dev Biol 152:304–314CrossRefPubMedGoogle Scholar
  30. Florman HM, Arnoult C, Kazam IG, Li C, O’Toole CM (1998) A perspective on the control of mammalian fertilization by egg-activated ion channels in sperm: a tale of two channels. Biol Reprod 59:12–16CrossRefPubMedGoogle Scholar
  31. Gervasi MG, Marczylo TH, Lam PM, Rana S, Franchi AM, Konje JC, Perez-Martinez S (2013) Anandamide levels fluctuate in the bovine oviduct during the oestrous cycle. PLoS One 8, e72521CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hamamah S, Gatti JL (1998) Role of the ionic environment and internal pH on sperm activity. Hum Reprod 13(Suppl 4):20–30CrossRefPubMedGoogle Scholar
  33. Harayama H (2013) Roles of intracellular cyclic AMP signal transduction in the capacitation and subsequent hyperactivation of mouse and boar spermatozoa. J Reprod Dev 59:421–430CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hernandez-Gonzalez EO, Sosnik J, Edwards J, Acevedo JJ, Mendoza-Lujambio I, Lopez-Gonzalez I, Demarco I, Wertheimer E, Darszon A, Visconti PE (2006) Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. J Biol Chem 281:5623–5633CrossRefPubMedGoogle Scholar
  35. Hernandez-Gonzalez EO, Trevino CL, Castellano LE, De La Vega-Beltran JL, Ocampo AY, Wertheimer E, Visconti PE, Darszon A (2007) Involvement of cystic fibrosis transmembrane conductance regulator in mouse sperm capacitation. J Biol Chem 282:24397–24406CrossRefPubMedGoogle Scholar
  36. Kavanagh JP (1985) Sodium, potassium, calcium, magnesium, zinc, citrate and chloride content of human prostatic and seminal fluid. J Reprod Fertil 75:35–41CrossRefPubMedGoogle Scholar
  37. Khan MS, Zaman S, Sajjad M, Shoaib M, Gilani G (2011) Assessment of the level of trace element zinc in seminal plasma of males and evaluation of its role in male infertility. Int J Appl Basic Med Res 1:93–96CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737–740CrossRefPubMedGoogle Scholar
  39. Kleinboelting S, Diaz A, Moniot S, van den Heuvel J, Weyand M, Levin LR, Buck J, Steegborn C (2014) Crystal structures of human soluble adenylyl cyclase reveal mechanisms of catalysis and of its activation through bicarbonate. Proc Natl Acad Sci U S A 111:3727–3732CrossRefPubMedPubMedCentralGoogle Scholar
  40. Krapf D, Arcelay E, Wertheimer EV, Sanjay A, Pilder SH, Salicioni AM, Visconti PE (2010) Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem 285:7977–7985CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krapf D, Ruan YC, Wertheimer EV, Battistone MA, Pawlak JB, Sanjay A, Pilder SH, Cuasnicu P, Breton S, Visconti PE (2012) cSrc is necessary for epididymal development and is incorporated into sperm during epididymal transit. Dev Biol 369:43–53CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lawson C, Goupil S, Leclerc P (2008) Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod 79:657–666CrossRefPubMedGoogle Scholar
  43. Lievano A, Santi CM, Serrano CJ, Trevino CL, Bellve AR, Hernandez-Cruz A, Darszon A (1996) T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 388:150–154CrossRefPubMedGoogle Scholar
  44. Lishko PV, Kirichok Y (2010) The role of Hv1 and CatSper channels in sperm activation. J Physiol 588:4667–4672CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327–337CrossRefPubMedGoogle Scholar
  46. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE (2012) The control of male fertility by spermatozoan ion channels. Annu Rev Physiol 74:453–475CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu J, Xia J, Cho KH, Clapham DE, Ren D (2007) CatSperbeta, a novel transmembrane protein in the CatSper channel complex. J Biol Chem 282:18945–18952CrossRefPubMedGoogle Scholar
  48. Lopez-Gonzalez I, Torres-Rodriguez P, Sanchez-Carranza O, Solis-Lopez A, Santi CM, Darszon A, Trevino CL (2014) Membrane hyperpolarization during human sperm capacitation. Mol Hum Reprod 20(7):619–629CrossRefPubMedPubMedCentralGoogle Scholar
  49. Martinez-Lopez P, Santi CM, Trevino CL, Ocampo-Gutierrez AY, Acevedo JJ, Alisio A, Salkoff LB, Darszon A (2009) Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels. Biochem Biophys Res Commun 381:204–209CrossRefPubMedPubMedCentralGoogle Scholar
  50. Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci U S A 104:7688–7692CrossRefPubMedPubMedCentralGoogle Scholar
  51. Pastor-Soler N, Pietrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology (Bethesda) 20:417–428CrossRefGoogle Scholar
  52. Publicover SJ, Barratt CL (1999) Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do? Hum Reprod 14:873–879CrossRefPubMedGoogle Scholar
  53. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A 104:1219–1223CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE (2009) Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci U S A 106:7642–7647CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ren D, Xia J (2010) Calcium signaling through CatSper channels in mammalian fertilization. Physiology (Bethesda) 25:165–175CrossRefGoogle Scholar
  56. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609CrossRefPubMedGoogle Scholar
  57. Romarowski A, Battistone MA, La Spina FA, Puga Molina LC, Luque GM, Vitale AM, Cuasnicu PS, Visconti PE, Krapf D, Buffone MG (2015) PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol 405:237–249CrossRefPubMedGoogle Scholar
  58. Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J, Visconti PE (2007) Signalling pathways involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245–259PubMedGoogle Scholar
  59. Sanchez-Carranza O, Torres-Rodriguez P, Darszon A, Trevino CL, Lopez-Gonzalez I (2015) Pharmacology of hSlo3 channels and their contribution in the capacitation-associated hyperpolarization of human sperm. Biochem Biophys Res Commun 466:554–559CrossRefPubMedGoogle Scholar
  60. Santi CM, Martinez-Lopez P, De La Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046CrossRefPubMedPubMedCentralGoogle Scholar
  61. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2:366CrossRefPubMedGoogle Scholar
  62. Stival C, La Spina FA, Baro GC, Arcelay E, Arranz SE, Ferreira JJ Sr, Le Grand S, Santi CM, Visconti PE, Buffone MG, Krapf D (2015) Src is the connecting player between PKA activation and hyperpolarization through SLO3 regulation in mouse sperm. J Biol Chem 290(30):18855–18864CrossRefPubMedGoogle Scholar
  63. Strunker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB (2011) The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471:382–386CrossRefPubMedGoogle Scholar
  64. Suarez SS, Pacey AA (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12:23–37CrossRefPubMedGoogle Scholar
  65. Sumigama S, Mansell S, Miller M, Lishko PV, Cherr GN, Meyers SA, Tollner T (2015) Progesterone accelerates the completion of sperm capacitation and activates CatSper channel in spermatozoa from the rhesus macaque. Biol Reprod 93:130CrossRefPubMedGoogle Scholar
  66. Takeshita K, Sakata S, Yamashita E, Fujiwara Y, Kawanabe A, Kurokawa T, Okochi Y, Matsuda M, Narita H, Okamura Y, Nakagawa A (2014) X-ray crystal structure of voltage-gated proton channel. Nat Struct Mol Biol 21:352–357CrossRefPubMedGoogle Scholar
  67. Varano G, Lombardi A, Cantini G, Forti G, Baldi E, Luconi M (2008) Src activation triggers capacitation and acrosome reaction but not motility in human spermatozoa. Hum Reprod 23:2652–2662CrossRefPubMedGoogle Scholar
  68. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150PubMedGoogle Scholar
  69. Visconti PE, Krapf D, De La Vega-Beltran JL, Acevedo JJ, Darszon A (2011) Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 13:395–405CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wandernoth PM, Mannowetz N, Szczyrba J, Grannemann L, Wolf A, Becker HM, Sly WS, Wennemuth G (2015) Normal fertility requires the expression of carbonic anhydrases II and IV in sperm. J Biol Chem 290:29202–29216CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5:1117–1122CrossRefPubMedGoogle Scholar
  72. Wang D, Hu J, Bobulescu IA, Quill TA, McLeroy P, Moe OW, Garbers DL (2007) A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). Proc Natl Acad Sci U S A 104:9325–9330CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wang H, Liu J, Cho KH, Ren D (2009) A novel, single, transmembrane protein CATSPERG is associated with CATSPER1 channel protein. Biol Reprod 81:539–544CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wertheimer E, Krapf D, De La Vega-Beltran JL, Sanchez-Cardenas C, Navarrete F, Haddad D, Escoffier J, Salicioni AM, Levin LR, Buck J, Mager J, Darszon A, Visconti PE (2013) Compartmentalization of distinct cAMP signaling pathways in mammalian sperm. J Biol Chem 288:35307–35320CrossRefPubMedPubMedCentralGoogle Scholar
  75. Xu WM, Shi QX, Chen WY, Zhou CX, Ni Y, Rowlands DK, Yi LG, Zhu H, Ma ZG, Wang XF, Chen ZH, Zhou SC, Dong HS, Zhang XH, Chung YW, Yuan YY, Yang WX, Chan HC (2007) Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci U S A 104:9816–9821CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zanetti N, Mayorga LS (2009) Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction. Biol Reprod 81:396–405CrossRefPubMedGoogle Scholar
  77. Zeng Y, Clark EN, Florman HM (1995) Sperm membrane potential: hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Dev Biol 171:554–563CrossRefPubMedGoogle Scholar
  78. Zeng Y, Oberdorf JA, Florman HM (1996) pH regulation in mouse sperm: identification of Na(+)-, Cl(-)-, and HCO3(-)-dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev Biol 173:510–520CrossRefPubMedGoogle Scholar
  79. Zeng XH, Navarro B, Xia XM, Clapham DE, Lingle CJ (2013) Simultaneous knockout of Slo3 and CatSper1 abolishes all alkalization- and voltage-activated current in mouse spermatozoa. J Gen Physiol 142:305–313CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cintia Stival
    • 1
  • Lis del C. Puga Molina
    • 2
  • Bidur Paudel
    • 3
  • Mariano G. Buffone
    • 2
  • Pablo E. Visconti
    • 3
  • Dario Krapf
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR) and Laboratorio de Especialidades Reproductivas (Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR)RosarioArgentina
  2. 2.Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Department of Veterinary and Animal Sciences, ISBUniversity of MassachusettsAmherstUSA

Personalised recommendations